Have a personal or library account? Click to login
Clinical significance of antibodies to antigens in the Raph, John Milton Hagen, I, Globoside, Gill, Rh-associated glycoprotein, FORS, JR, LAN, Vel, CD59, and Augustine blood group systems Cover

Clinical significance of antibodies to antigens in the Raph, John Milton Hagen, I, Globoside, Gill, Rh-associated glycoprotein, FORS, JR, LAN, Vel, CD59, and Augustine blood group systems

By: M. Moghaddam and  A.A. Naghi  
Paid access
|Oct 2019

References

  1. Crew VK, Burton N, Kagan A, et al. CD151, the first member of the tetraspanin (TM4) super family detected on erythrocytes is essential for the correct assembly of human basement membranes in kidney and skin. Blood 2003;102:4a.
  2. Daniels G. Human blood groups. 3rd ed. London, UK: Wiley-Blackwell, 2013.10.1002/9781118493595
  3. Hayes M. Raph blood group system. Immunohematology 2014;30:6–10.10.21307/immunohematology-2019-091
  4. Reid ME, Lomas-Francis C, Olsson ML. The blood group antigen factsbook. 3rd ed. San Diego, CA: Academic Press, 2012.10.1016/B978-0-12-415849-8.00006-5
  5. Johnson ST. JMH blood group system: a review. Immunohematology 2014;30:18–23.10.21307/immunohematology-2019-094
  6. Daniels G, Flegel WA, Fletcher A, et al. International Society of Blood Transfusion Committee on Terminology for Red Cell Surface Antigens: Cape Town report. Vox Sang 2007;92: 250–3.10.1111/j.1423-0410.2007.00887.x17348875
  7. Seltsam A, Agaylan A, Grueger D, et al. Rapid detection of JMH antibodies with recombinant Sema7A(CD108) protein and the particle gel immunoassay. Transfusion 2008;48:1151–6.10.1111/j.1537-2995.2008.01660.x18422858
  8. Bierhuizen MFA, Mattei MG, Fukuda M. Expression of the developmental I antigen by a cloned human cDNA encoding a member of a ß-1,6-N-acetylglucosaminyltransferase gene family. Genes Dev 1993;7:468–78.10.1101/gad.7.3.4688449405
  9. Yu LC, Twu YC, Chang CY, et al. Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 2001;98:3840–5.10.1182/blood.V98.13.3840
  10. Inaba N, Hiruma T, Togayachi A, et al. A novel I-branching ß-1,6-N-acetylglucosaminyltransferase involved in the human blood group I antigen expression. Blood 2003;101:2870–6.10.1182/blood-2002-09-283812468428
  11. Hellberg A, Westman JS, Olsson ML. An update on the GLOB blood group system and collection. Immunohematology 2013;29:19–24.10.21307/immunohematology-2019-119
  12. Roudier N, Verbavatz JM, Maurel C, et al. Evidence for the presence of aquaporin-3 in human red blood cells. J Biol Chem 1998;273:8407–12.10.1074/jbc.273.14.84079525951
  13. Tilley L, Gren C, Poole J, et al. A new blood group system, RHAG: three antigens resulting from amino acid substitutions in the Rh-associated glycoprotein. Vox Sang 2010;8:151–9.10.1111/j.1423-0410.2009.01243.x19744193
  14. Barr K, Korchagina E, Popova I, et al. Monoclonal anti-A activity against the FORS1 (Forssman) antigen.Transfusion 2014;55:129–36.10.1111/trf.1277325039359
  15. Svensson L, Hult AK, Stamps R, et al. Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood 2013;121:1459–68.10.1182/blood-2012-10-45505523255552
  16. Storry J. Five new blood group systems: what next? ISBT Sci Ser 2014;9:136–40.10.1111/voxs.12078
  17. Castilho L, Reid ME. A review of JR blood group system. Immunohematology 2013;29:63–8.10.21307/immunohematology-2019-126
  18. Saison C, Helia V, Ballif BA, et al. Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 2012;44:174–7.10.1038/ng.1070365363122246505
  19. Zelinski T, Coghlan G, Liu XQ, et al. ABCG2 null alleles define the Jr(a–) blood group phenotype. Nat Genet 2012;44:131–2.10.1038/ng.107522246507
  20. Ogasawara K, Osabe T, Susuki Y, et al. A new ABCG2 null allele with a 27kb deletion including the promoter region causing the Jr(a–) phenotype. Transfusion 2015;55:1467–71.10.1111/trf.1296925522810
  21. Coghlan G. The JR blood group system: genetic and molecular investigations. ISBT Sci Ser 2012;7:260–3.10.1111/j.1751-2824.2012.01558.x
  22. Hue-Roye K, Lomas-Francis C, Coghlan G, et al. The JR blood group system (ISBT 032): molecular characterization of the three new null alleles. Transfusion 2013;53:1575–9.10.1111/j.1537-2995.2012.03930.x23066723
  23. Fujita S, Kashiwagi H, Tomimatsu T, et al. Expression levels of ABCG2 on cord red blood cells and study of fetal anemia associated with anti-Jr(a). Transfusion 2016;56:1171–81.10.1111/trf.1351526868047
  24. Endo Y, Ito S, Ogiyama Y. Suspected anemia caused by maternal anti-Jr(a) antibodies: a case report. Biomark Res 2015;3:23.10.1186/s40364-015-0048-x454620626301094
  25. Peyrard T. The LAN blood group system: a review. Immunohematology 2013;29:131–5.10.21307/immunohematology-2019-135
  26. Reid ME, Hue-Roye K, Huamg A, et al. Alleles of the LAN blood group system: molecular and serologic investigation. Transfusion 2014;54:398–404.
  27. McBean R, Wilson B, Liew Y, et al. Quantitation of Lan antigen in Lan+, Lan+w, and Lan– phenotypes. Blood Transfus 2015; 13:662–5.
  28. Hayer-Wigman I, deHaas M, van der Schoot CE. The immune response to the VEL antigen is HLA class II DRB1*11 restricted. Vox Sang 2013;105(suppl 1):29.
  29. Race RR, Sanger R. Blood groups in man. 6th ed. Philadelphia, PA: Blackwell Science Ltd., 1975:413.
  30. Storry JR, Joud M, Christophersen MK, et al. Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Nat Gen 2013;45:537–41.10.1038/ng.260023563606
  31. Vejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlines the Vel blood group and influences red blood cell traits. Nat Genet 2013;45:542–5.10.1038/ng.2603417928223563608
  32. Ballif BA, Helia V, Peyrard T, et al. Disruption of SMIM1 causes the Vel– blood type. EMBO Mol Med 2013;5:751–61.10.1002/emmm.201302466366231723505126
  33. Storry JR, Mallory D. Misidentification of anti-Vel due to inappropriate use of techniques. Immunohematology 1994;10: 83–6.10.21307/immunohematology-2019-927
  34. Anliker M, Zabera I, Hochsmann B, et al. A new blood group antigen is defined by anti-CD59 detected in a CD59-deficient patient. Transfusion 2014;54:1817–22.10.1111/trf.12531531720124383981
  35. McBean R, Liew Y, Wilson B, et al. Genotyping confirms inheritance of the rare At(a–) type in a case of hemolytic disease of the newborn. J Path Clin Res 2016;2:53–5.10.1002/cjp2.33485812427499913
  36. Applewhaite F, Ginsberg V, Gerena J, et al. A very frequent red cell antigen Ata. Vox Sang 1967;13:444–5.10.1111/j.1423-0410.1967.tb03789.x6050732
  37. Daniels G, Ballif B, Helias V, et al. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type. Blood 2015;125:3651–4.10.1182/blood-2015-03-631598445880325896650
  38. Rose JB, Naydenova Z, Bang A, et al. Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection. Am J Physiol Heart Circ Physiol 2010;298:H771–7.10.1152/ajpheart.00711.2009377407220035027
DOI: https://doi.org/10.21307/immunohematology-2018-013 | Journal eISSN: 1930-3955 | Journal ISSN: 0894-203X
Language: English
Page range: 85 - 90
Published on: Oct 16, 2019
Published by: American National Red Cross
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 M. Moghaddam, A.A. Naghi, published by American National Red Cross
This work is licensed under the Creative Commons License.