Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K. and Zhang, L. 2016. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, pp. 308–318.
Ajakan, H., Germain, P., Larochelle, H., Laviolette, F. and Marchand, M. 2015. Domain-adversarial neural networks, available at: https://arxiv.org/abs/1412.4446
Bian, S., Wang, T., Hiromoto, M. and Shi, Y. 2020. ENSEI: efficient secure inference via frequency-domain homomorphic convolution for privacy-preserving visual recognition, available at: https://arxiv.org/abs/2003.05328
Bun, M. and Steinke, T. 2016. Concentrated differential privacy: simplifications, extensions, and lower bounds. Theory of Cryptography Conference, Springer, pp. 635–658.
Butler, D. J., Huang, J., Roesner, F. and Cakmak, M. 2015. The privacy utility tradeoff for remotely tele-operated robots. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 27–34.
Chattopadhyay, A. and Boult, T. E. 2007. Privacycam: a privacy preserving camera using uclinux on the blackfin DSP, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.
Chen, K., Yao, L., Wang, X., Zhang, D., Gu, T., Yu, Z. and Yang, Z. 2018. Interpretable parallel recurrent neural networks with convolutional attentions for multi-modality activity modeling. IJCNN, IEEE, pp. 1–8.
Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z. and Liu, Y. 2020. Deep learning for sensor-based human activity recognition: overview, challenges and opportunities, available at: https://arxiv.org/abs/2001.07416
Cormode, G., Procopiuc, C. M., Srivastava, D. and Tran, T. T. L. 2012. Differentially private summaries for sparse data. International Conference on Database Theory, pp. 299–311.
Dai, J., Saghafi, B., Wu, J., Konrad, J. and Ishwar, P. 2015. Towards privacy-preserving recognition of human activities. 2015 IEEE International Conference on In Image Processing (ICIP), pp. 4238–4242.
El-Yahyaoui, A. and Ech-Cherif El Kettani, M. D. 2019. A verifiable fully homomorphic encryption scheme for cloud computing security. Technologies 7(21): 1–15.
Ertin, E., Stohs, N., Kumar, S., Raij, A., al’Absi, M. and Shah, S. 2011. Autosense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, ACM, pp. 274–287.
Gajjar, V., Khandhediya, Y. and Gurnani, A. 2017. Human detection and tracking for video surveillance a cognitive science approach. IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, pp. 2805–2809, doi: 10.1109/ICCVW.2017.330.
Garcia, F. D. and Jacobs, B. 2010. Privacy-friendly energy-metering via homomorphic encryption. International Workshop on Security and Trust Management, Springer, pp. 226–238.
Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P. and Riviere, E. 2015. Edge-centric computing: vision and challenges. ACM SIGCOMM Computer Communication Review 45(5): 37–42.
Gomathisankaran, M., Yuan, X. and Kamongi, P. 2013. Ensure privacy and security in the process of medical image analysis. 2013 IEEE International Conference on Granular Computing (GrC), pp. 120–125.
Haris, M., Haddadi, H. and Hui, P. 2014. Privacy leakage in mobile computing: tools, methods, and characteristics, available at: https://arxiv.org/abs/1410.4978.
Hayes, J. and Ohrimenko, O. 2018. Contamination attacks and mitigation in multi-party machine learning. Conference on Neural Information Processing Systems (NeurIPS), pp. 6602–6614.
Hu, C., Chen, Y., Peng, X., Yu, H., Gao, C. and Hu, L. 2019. A novel feature incremental learning method for sensor-based activity recognition. IEEE Transactions on Knowledge and Data Engineering 31(6): 1038–1050.
Hwang, S., Park, J., Kim, N., Choi, Y. and Kweon, I. S. 2015. Multispectral pedestrian detection: benchmark dataset and baseline. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 7-12, pp. 1037–1045.
Iwasawa, Y., Nakayama, K., Yairi, I. E. and Matsuo, Y. 2017. Privacy issues regarding the application of DNNs to activity-recognition using wearables and its countermeasures by use of adversarial training. International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 1930–1936.
Jain, A. and Kanhangad, V. 2016. Investigating gender recognition in smartphones using accelerometer and gyroscope sensor readings. ICCTICT, IEEE, pp. 597–602.
Juuti, M., Szyller, S., Marchal, S. and Asokan, N. 2019. PRADA: protecting against DNN model stealing attacks. 2019 IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, pp. 512–527.
Kariyappa, S. and Kariyappa, S. 2019. Defending against model stealing attacks with adaptive misinformation, available at: https://arxiv.org/abs/1911.07100
Lu, J., Wang, G. and Moulin, P. 2013. Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE TIFS 9(1): 51–61.
Malekzadeh, M., Clegg, R. G., Cavallaro, A. and Haddadi, H. 2018. Protecting sensory data against sensitive inferences. Proceedings of the 1st Workshop on Privacy by Design in Distributed Systems, ACM, p. 2.
Malekzadeh, M., Clegg, R. G., Cavallaro, A. and Haddadi, H. 2019. Mobile sensor data anonymization. Proceedings of the International Conference on Internet of Things Design and Implementation, pp. 49–58.
Melis, L., Song, C., De Cristofaro, E. and Shmatikov, V. 2018. Exploiting unintended feature leakage in collaborative learning, available at: https://arxiv.org/abs/1805.04049
Nasr, M., Shokri, R. and Houmansadr, A. 2018. Machine learning with membership privacy using adversarial regularization. ACM Conference on Computer and Communications Security (CCS), Toronto, Canada, October 15–19.
Nelus, A. and Martin, R. 2019. Privacy-aware feature extraction for gender discrimination versus speaker identification, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, May 12–17.
Osia, S. A., Taheri, A., Shamsabadi, A. S., Katevas, K., Haddadi, H. and Rabiee, H. R. 2018. Deep private-feature extraction, available at: https://arxiv.org/abs/1802.03151
Osia, S. A., Taheri, A., Shamsabadi, A. S., Katevas, K., Haddadi, H. and Rabiee, H. R. 2020. Deep private-feature extraction. IEEE Transactions on Knowledge and Data Engineering 32(1): 54–66.
Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I. and Talwar, K. 2017. Semi-supervised knowledge transfer for deep learning from private training data. Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, April 24–26.
Phan, N., Wang, Y., Wu, X. and Dou, D. 2016. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, February 12–17.
Ren, S., He, K., Girshick, R. and Sun, J. 2016. Faster R-CNN: towards real-time object detection with region proposal networks, available at: https://arxiv.org/abs/1506.01497
Ren, Z., Lee, Y. J. and Ryoo, M. S. 2018. Learning to anonymize faces for privacy preserving action detection. European Conference on Computer Vision (ECCV), 620–636.
Ryoo, M. S., Rothrock, B., Fleming, C. and Yang, H. J. 2017. Privacy-preserving human activity recognition from extreme low resolution. AAAI Conference on Artificial Intelligence, San Francisco, CA, February 4–9.
Shokri, R., Stronati, M., Song, C. and Shmatikov, V. 2017. Membership inference attacks against machine learning models. 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18.
Song, C. and Shmatikov, V. 2020. Overlearning reveals sensitive attributes, Proceedings of International Conference on Learning Representations (ICLR). Virtual Conference, April 26–30.
Song, L., Shokri, R. and Mittal, P. 2019. Membership inference attacks against adversarially robust deep learning models. IEEE Security and Privacy Workshops (SPW).
Speciale, P., Schonberger, J. L., Kang, S. B., Sinha, S. N. and Pollefeys, M. 2019. Privacy preserving image-based localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5493–5503.
Tanuwidjaja, H. C., Choi, R. and Kim, K. 2019. A survey on deep learning techniques for privacy-preserving, machine learning for cyber security. ML4CS 2019. Lecture Notes in Computer Science 11806: 29–46.
Tramer, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D. and McDaniel, P. 2018. Ensemble adversarial training: attacks and defenses Proceedings of International Conference on Learning Representations (ICLR). Vancouver, Canada, April 30–May 3.
Tramèr, F., Zhang, F., Juels, A., Reiter, M. K. and Ristenpart, T. 2016. Stealing machine learning models via prediction APIs. USENIX Security Symposium, pp. 601–618.
Wang, B. and Gong, N. Z. 2018. Stealing hyperparameters in machine learning. IEEE Symposium on Security and Privacy, Hyatt Regency, San Francisco, May 21–23.
Wang, J., Chen, Y., Hao, S., Peng, X. and Hu, L. 2019. Deep learning for sensor-based activity recognition: a survey. Pattern Recognition Letters 119: 3–11.
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D. and Campbell, A. T. 2014. Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, pp. 3–14.
Winkler, T., Erd´elyi, A. and Rinner, B. 2014. TrustEYE. m4: protecting the sensor-not the camera. 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 159–164.
Wood, A., Altman, M., Bembenek, A., Bun, M., Gaboardi, M., Honaker, J., Nissim, K., OBrien, D. R., Steinke, T. and Vadhan, S. 2018. Differential privacy: a primer for a non-technical audience. Vanderbilt Journal of Entertainment & Technology Law 21(1): 209–275.
Wu, Z., Wang, Z., Wang, Z. and Jin, H. 2018. Towards privacy-preserving visual recognition via adversarial training: a pilot study, Proceedings of the European Conference on Computer Vision (ECCV), pp. 606–624.
Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J. and Lv, W. 2019. Edge computing security: state of the art and challenges. Proceedings of the IEEE 107(8): 1608–1631.
You, C.-W., Montes-de Oca, M., Bao, T. J., Lane, N. D, Lu, H., Cardone, G., Torresani, L. and Campbell, A. T. 2012. Carsafe: a driver safety app that detects dangerous driving behavior using dual-cameras on smartphones. Proceedings of the 2012 ACM Conference on Ubiquitous Computing, ACM, pp. 671–672.
Zhang, D., Yao, L., Chen, K., Long, G. and Wang, S. 2019. Collective protection: preventing sensitive inferences via integrative transformation. 19th IEEE International Conference on Data Mining (ICDM), IEEE, pp. 1–6.