Have a personal or library account? Click to login

LiDAR derived terrain wetness indices to infer soil moisture above underground pipelines

Open Access
|Feb 2020

References

  1. Batchelor, M. 2015. Managing big data in a small office: how can we best utilise LiDAR and Aerial photography. Presented at the 20th Association of Public Authority Surveyors Conference (APAS2015), Coffs Harbour, 16–18 March.
  2. Beven, K. J. and Kirkby, M. J. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin 24(1): 43–69.
  3. Boehner, J. and Selige, T. 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. in Boehner, J., McCloy, K. R. and Strobl, J. (Eds), SAGA – Analysis and Modelling Applications 115 Goettinger Geographische Abhandlungen, Goettingen, pp. 13–28.
  4. Boehner, J., Kothe, R., Conrad, O., Gross, J., Ringeler, A. and Selige, T. 2002. Soil regionalisation by means of terrain analysis and process parameterisation. Research Report No. 7, European Soil Bureau, Luxembourg, pp. 213–222.
  5. Bretreger, D., Hancock, G., Yeo, I.-Y., Martinez, C., Wells, T., Cox, T., Kunkel, V., Gibson, A. under review. Determining soil moisture using portable probes: a comparison of different methods at the large catchment scale. Journal of Hydrology.
  6. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J. M., Wichmann, V., Böhner, J. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(7): 1991–2007.
  7. Delta-T Devices Ltd 2013. User Manual for the Moisture Meter type HH2 Delta-T Devices, Cambridge.
  8. Freeman, T. G. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences 17(3): 413–422.
  9. Hardy, A. J. 2010. Mapping soil moisture as an indicator of transport corridor slope instability using remotely sensed data. Journal of Maps 6(S1): 1–11.
  10. Kemppinen, J., Niittynen, P., Riihimäki, H. and Luoto, M. 2018. Modelling soil moisture in a high-latitude landscape using LiDAR and soil data. Earth Surface Processes and Landforms 43(5): 1019–1031.
  11. Kim, S. 2009. Characterization of soil moisture responses on a hillslope to sequential rainfall events during late autumn and spring. Water Resources Research 45, W09425, doi: 10.1029/2008WR007239.
  12. Lang, M., McCarty, G., Oesterling, R. and Yeo, I.-Y. 2012. Topographic metrics for improved mapping of forested wetlands. Wetlands 33(1): 141–155.
  13. Matula, S., Batkova, K. and Legese, W. L. 2016. Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors (Basel) 16(11): 1912, available at: https://doi.org/10.3390/s16111912
  14. Melchers, R. E. 2017. Post-perforation external corrosion of cast iron pressurised water mains. Corrosion Engineering, Science and Technology 52(7): 541–546.
  15. Melchers, R. E. 2019. Corrosion of cast iron water mains – developing models for long-term prediction. presented at the International Corrosion Science and Corrosion Engineering Symposium, Melbourne.
  16. Melchers, R. E., Petersen, R. B. and Wells, T. 2018. The effect of atmospheric precipitation on the corrosion of ferrous metals buried in soils. Corrosion Engineering, Science and Technology 54(1): 28–36.
  17. Melchers, R. E., Petersen, R. B. and Wells, T. 2019. Empirical models for long-term localised corrosion of cast iron pipes buried in soils. Corrosion Engineering, Science and Technology pp. 1–10.
  18. Millard, K. and Richardson, M. 2014. Wetland mapping with LiDAR derivatives, SAR polarimetric decompositions, and LiDAR–SAR fusion using a random forest classifier. Canadian Journal of Remote Sensing 39(4): 290–307.
  19. Olaya, V. and Conrad, O. 2009. Chapter 12 geomorphometry in SAGA. in Hengl, T. and Reuter, H. I. (Eds), Geomorphometry – Concepts, Software, Applications (Developments in Soil Science), pp. 293–308.
  20. Petersen, R. B. and Melchers, R. E. 2014. Long term corrosion of buried cast iron pipes in native soils. presented at the Corrosion & Prevention Conference & Exhibition, Darwin, NT, Australia.
  21. Petersen, R. B. and Melchers, R. E. 2019. Effect of moisture content and compaction on the corrosion of mild steel buried in clay soils. Corrosion Engineering, Science and Technology 54(7): 587–600.
  22. Tenenbaum, D. E., Band, L. E., Kenworthy, S. T. and Tague, C. L. 2006. Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high-resolution photogrammetric and LIDAR digital elevation datasets. Hydrological Processes 20(2): 219–240.
  23. Thomas, I. A., Jordan, P., Shine, O., Fenton, O., Mellander, P. E., Dunlop, P., Murphy, P. N. C. 2017. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. International Journal of Applied Earth Observation and Geoinformation 54: 38–52.
  24. Vaze, J. and Teng, J. 2007. High resolution LiDAR DEM – how good is it? in Oxley, L. and Kulasiri, D. (Eds), MODSIM 2007 International Congress on Modelling and Simulation Modelling and Simulation Society of Australia and New Zealand, Christchurch, New Zealand, December, pp. 692–698, ISBN: 978-0-9758400-4-7, available at: www.mssanz.org.au/MODSIM07/papers/12_s27/HighResolution_s27_Vaze_.pdf
  25. Vaze, J., Teng, J. and Spencer, G. 2010. Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling & Software 25(10): 1086–1098.
  26. Wang, L. and Liu, H. 2006. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science 20(2): 193–213.
  27. Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R. and McMahon, T. A. 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research 35(3): 797–810.
  28. Wilson, D. J., Western, A. W., Grayson, R. B., Berg, A. A., Lear, M. S., Rodell, M., Famiglietti, J. S., Woods, R. A., McMahon, T. A. 2003. Spatial distribution of soil moisture over 6 and 30cm depth, Mahurangi river catchment, New Zealand. Journal of Hydrology 276(1-4): 254–274.
Language: English
Page range: 1 - 7
Submitted on: Dec 20, 2019
Published on: Feb 15, 2020
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 David Bretreger, In-Young Yeo, Robert Melchers, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.