Have a personal or library account? Click to login

In Situ Monitoring of Temperature Rise in Friction Surface Using Ultrasonic Technique

By:
I. Ihara and  S. Aoki  
Open Access
|Feb 2020

References

  1. L. Mu, Y. Shi, X. Feng, J. Zhu and X. Lu (2012). “The effect of thermal conductivity and friction coefficient on the contact temperature of polyimide composites: Experimental and finite element simulation.” Tribology International, 53, pp. 45-52.
  2. T. F. J. Quinn, W. O. Winner (1995). “The thermal aspects of oxidational wear.” Wear, 102, pp. 67-80.
  3. S. Suzuki, and F.E. Kennedy (1988). “Friction and temperature at headdisk interface in contact start/stop tests.” Society of Tribologists and Lubrication Engineers, Park Ridge, pp. 30-36.
  4. X. Tian, F. E. Kennedy, J. J. Deacutis and A. K. Henning (1992). “The development and use of thin film thermocouples for contact temperature measurement.” Tribology Transactions, 35, pp. 491-499.
  5. T.-F. Chen, K.T. Nguyen, S.-S. Wen and C.-K. Jen., (1999). “Temperature measurement of polymer extrusion by ultrasonic techniques.” Meas. Sci. Technol., 10, pp. 139-145.
  6. K. Balasubramainiam, V.V. Shah, R.D. Costley, G. Boudreaux and J.P. Singh (1999). “High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts.” Rev. Sci. Instrum., 70-12, pp. 4618-4623.
  7. W.-Y. Tsai, H.-C. Chen and T.L. Liao (2005). “An ultrasonic air temperature measurement system with self-correction function for humidity.” Meas. Sci. Technol., 16, pp. 548-555.
  8. K. Mizutani, S. Kawabe, I. Saito and H. Masuyama (2006). “Measurement of temperature distribution using acoustic reflector.” Jpn. J. Appl. Phys., 45-5B, pp. 4516-4520.
  9. F. L. Degertekin, J. Pei, B. T. Khuri-Yakub and K.C. Saraswat (1994). “In-situ acoustic temperature tomography of semiconductor wafers.” Appl. Phys. Lett., 64, pp. 1338-1040.
  10. K.-N. Huang, C.-F. Huang, Y.-C. Li and M.-S. Young (2002). “High precision fast ultrasonic thermometer based on measurement of the speed of sound in air.” Rev. Sci. Instrum., 73-11, pp. 4022-4027.
  11. C. Simon, P. VanBaren and E. Ebbini (1998). “Two-dimensional temperature estimation using diagnostic ultrasound.” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 45-.4, pp. 1088-1099.
  12. M. Takahashi and I. Ihara (2008). “Ultrasonic Monitoring of Internal Temperature Distribution in a Heated Material.” Jpn J. App. Phys., 47, pp. 3894-3898.
  13. I. Ihara and M. Takahashi (2009). “Non-invasive Monitoring of Temperature Distribution inside Materials with Ultrasound Inversion Method.” Int. J. Intelligent Systems Technologies and Applications, 7-1, pp. 80-91.
  14. I. Ihara and T. Tomomatsu (2011). “In-Situ Measurement of Internal Temperature Distribution of Sintered Materials Using Ultrasonic Technique.” IOP Conf. Series: Materials Science and Engineering, 18, 022008.
  15. M. Takahashi and I. Ihara (2009). “Quantitative evaluation of onedimensional temperature distribution on material surface using surface acoustic wave.” Jpn J. App. Phys., 48, GB04-1-5.
  16. G.E. Meyers (1971). “Analytical Methods in Conduction Heat Transfer.” New York: McGraw-Hill, p 10.
Language: English
Page range: 1 - 4
Published on: Feb 15, 2020
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 I. Ihara, S. Aoki, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.