Have a personal or library account? Click to login
Employment of PSO algorithm to improve the neural network technique for radial distribution system state estimation Cover

Employment of PSO algorithm to improve the neural network technique for radial distribution system state estimation

Open Access
|Sep 2019

References

  1. Anggoro, P. and Chan, N. L. 2017. A review on distribution system state estimation. IEEE Transactions on Power Systems 32(5): 3875–3883, doi: 10.1109/TPWRS.2016.2632156.
  2. Chakrabarti, S. and Jeyasurya, B. 2004. On-line voltage stability monitoring using artificial neural network. Proceedings of Large Engineering Systems Conference on Power Engineering (LESCOPE-04), July 28–30, 71–75, doi: 10.1109/LESCPE.2004.1356271.
  3. Chen, J. and Abur, A. 2008. Discussion on placement of PMUs to enable bad data detection in state estimation. IEEE Transactions on Power Systems 23(2): 817–817, doi: 10.1109/TPWRS.2008.920736.
  4. Fukuyama, Y., Nakanishi, Y. and Hsaio, D. C. 1996. Parallel power flow calculation in electric distribution networks. IEEE International Symposium on Circuits and Systems, Circuits and Systems Connecting the World, ISCAS 96, Vol. 1, Atlanta, GA, pp. 669–672, doi: 10.1109/ISCAS.1996.540036.
  5. Gastoni, S., Granelli, G. and Montagna, M. 2004. Robust state estimation procedure based on the maximum agreement between measurements. IEEE Transactions on Power Systems 19: 2038–2043, doi: 10.1109/TPWRS.2004.836190.
  6. Ghassan, A. S., Husham, I. H. and Mohamed, S. H. 2018. Enhancement the dynamic stability of the Iraq’s power station using PID controller optimized by FA and PSO based on different objective functions. Elektrotehniški Vestnik 85: 42–48.
  7. Hamada, M. M., Mohamed, A. A. W., Abou-Hashema, M. E.-S. and Husam, A. R. 2008. A proposed strategy for capacitor allocation in radial distribution feeders. 12th International Middle East Power Systems Conference, March 12–15, doi: 10.1109/MEPCON.2008.4562320.
  8. Hornik, K., Stinchcombe, M. and White, H. 1989. Multilayer feed forward networks are universal approximates. Neural Networks 2: 359–366, available at: http://dx.doi.org/10.1016/0893-6080(89)90020-8.
  9. Huang, L., Sun, Y. Z., Xu, J., Gao, W. Z., Zhang, J. and Wu, Z. P. 2014. Optimal PMU placement considering controlled islanding of power system. IEEE Transactions on Power Systems 29(2): 742–755, doi: 10.1109/TPWRS.2013.2285578.
  10. Husham, I. H. 2016. Neural network controller based Dstatcom for voltage sag mitigation and power quality issue. International Journal of Engineering and Technology 8(1): 405–420.
  11. Husham, I. H. and Ahmed, M. G. 2018. A hybrid model for state estimation prediction composed of neural network and PSO algorithm for Iraqi national super grid system. First International Scientific Conference of Engineering Sciences – 3rd Scientific Conference of Engineering Science (ISCES), 50–55, doi: 10.1109/ISCES.2018.8340527.
  12. Husham, I. H., Ghassan, A. S. and Mohammed, S. H. 2018. Phase measurement units based FACT’s devices for the improvement of power systems networks controllability. International Journal of Electrical and Computer Engineering 8: 888–899, doi: 10.11591/ijece.v8i2.
  13. Jako, K. 2009. Monitoring of electrical distribution network operation. thesis on Power Engineering, Electrical Engineering, Mining Engineering D37, Tallinn University of Technology, Tallinn Estonia.
  14. Lu, C. N., Leou, R. C., Cheng, C. L. and Rai, T. S. 1993. Modeling multiple injection bus in power system state estimation. IEE Proceedings GTD 140(6): 455–461, doi: 10.1049/ip-c.1993.0066.
  15. Manousakis, N. M., Korres, G. N. and Georgilakis, P. S. 2011. Optimal placement of phasor measurement units: a literature review. International Conference on Intelligent System Applications to Power Systems, Hersonissos, pp. 1–6, doi: 10.1109/ISAP.2011.6082183.
  16. Manousakis, N. M., Korres, G. N. and Georgilakis, P. S. 2012. Taxonomy of PMU placement methodologies. IEEE Transactions on Power Systems 27(2): 1070–1077, doi: 10.1109/TPWRS.2011.2179816.
  17. Mohamed, M. H., Mohamed, A. A. W., Abou-Hashema, M. E.-S. and Husam, A. R. 2009. A new approach for capacitor allocation in radial distribution feeders. Online Journal on Electronics and Electrical Engineering 1(1): 24–29, doi: 10.1016/j.procs.2015.10.039.
  18. More, K. K. and Jadhav, H. T. 2013. A literature review on optimal placement of phasor measurement units. Power, Energy and Control (ICPEC), 6–8, February, 220–224, doi: 10.1109/ICPEC.2013.6527654.
  19. Narvaez, A. and Grijalva, S. 2008. Robust state estimator applied to the Ecuadorian electric power system. IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, 1–6, doi: 10.1109/TDC-LA.2008.4641855.
  20. Pajic, S. and Clements, K. A. 2005. Power system state estimation via globally convergent methods. IEEE Transactions on Power Systems 20: 1683–1689, doi: 10.1109/PTC.2003.1304124.
  21. Paulo, M. D., Jesus, O. D. and Rojas Quintana, A. A. 2015. Distribution system state estimation model using a reduced quasi-symmetric impedance matrix. IEEE Transactions on Power Systems 30(6): 2856–2866, doi: 10.1109/TPWRS.2014.2374537.
  22. Paulo, M. D., Jesus, O. D., Manuel, A. and Yusta, J. 2013. Distribution power flow method based on a real quasi-symmetric matrix. Electric Power Systems Research 95(2): 148–159, available at: https://doi.org/10.1016/j.epsr.2012.08.011.
  23. Popovic, D., Kukolj, D. and Kulic, F. 1998. Monitoring and assessment of voltage stability margins using artificial neural networks with a reduced input set. IEEE Proceedings – Generation, Transmission, Distribution 145(4): 355–362, doi: 10.1049/ip-gtd:19981977.
  24. Ren, Z. S. S. and Jordan, R. C. O. 2018. Distribution system state estimator using SCADA and µPMU measurements. 2018 IEEE Innovative Smart Grid Technologies – Asia (ISGT Asia), pp. 558–562, doi: 10.1109/ISGT-Asia.2018.8467853.
  25. Seyed, M. M. and Mohammad, R. N. 2014. Power system state estimation with weighted linear least square. International Journal of Electrical and Computer Engineering 4(2): 169–178.
  26. Shafiul, A. S. M., Balasubramaniam, N. and Anil, P. 2014. Distribution grid state estimation from compressed measurements. IEEE Transactions on Smart Grid 5(4): 1631–1642, doi: 10.1109/TSG.2013.2296534.
  27. Shigenori, N., Yoshikazu, F., Takamu, G. and Toshiki, Y. 2001. Practical distribution state estimation using hybrid particle swarm optimization. Proceedings of IEEE Power Engineering Society Winter Meeting Columbus, OH, 2: 815–820, doi: 10.1109/PESW.2001.916969.
  28. Smart Grid 2008. An introduction, available: https://www.smartgrid.gov/files/sg_introduction.pdf.
  29. Syed, M. A., Ankur, G., Dinesh, K. C. and Saikat, C. 2017. Voltage stability monitoring of power systems using reduced network and artificial neural network. Electrical Power and Energy Systems 87: 43–51, doi: 10.1016/j.ijepes.2016.11.008.
  30. Zhou, D. Q., Annakkage, U. D. and Rajapakse, A. D. 2010. Online monitoring of voltage stability margin using an artificial neural network. IEEE Transactions on Power Systems 25(3): 1566–1574, doi: 10.1109/TPWRS.2009.2038059.
Language: English
Page range: 1 - 10
Submitted on: Jan 17, 2019
Published on: Sep 5, 2019
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Husham Idan Hussein, Ghassan Abdullah Salman, Ahmed Majeed Ghadban, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.