Have a personal or library account? Click to login

Circuit Design and Experimental Investigations for a Predator–Prey Model

Open Access
|Sep 2018

Figures & Tables

Fig. 1

Temporal evolution of the predator–prey system for m = 0.2: (A) prey and (B) predator.
Temporal evolution of the predator–prey system for m = 0.2: (A) prey and (B) predator.

Fig. 2

Phase portrait of the predator–prey system for m = 0.2.
Phase portrait of the predator–prey system for m = 0.2.

Fig. 3

Temporal evolution of the predator–prey system for m = 0.4: (A) prey and (B) predator.
Temporal evolution of the predator–prey system for m = 0.4: (A) prey and (B) predator.

Fig. 4

Phase portrait of the predator–prey system for m =0.4.
Phase portrait of the predator–prey system for m =0.4.

Fig. 5

Temporal evolution of the predator–prey system for m = 0.6: (A) prey and (B) predator.
Temporal evolution of the predator–prey system for m = 0.6: (A) prey and (B) predator.

Fig. 6

Phase portrait of the predator–prey system for m = 0.6.
Phase portrait of the predator–prey system for m = 0.6.

Fig. 7

Circuit design of the x2 function within MultiSIM software.
Circuit design of the x2 function within MultiSIM software.

Fig. 8

Circuit design of the x3 function within MultiSIM software.
Circuit design of the x3 function within MultiSIM software.

Fig. 9

Simulation results of the x2 function with MultiSIM Software.
Simulation results of the x2 function with MultiSIM Software.

Fig. 10

Simulation results of the x3 function with MultiSIM Software.
Simulation results of the x3 function with MultiSIM Software.

Fig. 11

Electronic circuit of the x2 function.
Electronic circuit of the x2 function.

Fig. 12

Electronic circuit of the x3 function.
Electronic circuit of the x3 function.

Fig. 13

Experimental results of x2 function.
Experimental results of x2 function.

Fig. 14

Experimental results of x3 function.
Experimental results of x3 function.

Fig. 15

Circuit design of the predator–prey system for m = 0.2.
Circuit design of the predator–prey system for m = 0.2.

Fig. 16

Temporal evolution via MultiSIM software (m = 0.2).
Temporal evolution via MultiSIM software (m = 0.2).

Fig. 17

Phase portrait via MultiSIM software (m = 0.2).
Phase portrait via MultiSIM software (m = 0.2).

Fig. 18

Circuit design of the predator–prey system for m = 0.4.
Circuit design of the predator–prey system for m = 0.4.

Fig. 19

Temporal evolution via MultiSIM software (m = 0.4).
Temporal evolution via MultiSIM software (m = 0.4).

Fig. 20

Phase portrait via MultiSIM software (m = 0.4).
Phase portrait via MultiSIM software (m = 0.4).

Fig. 21

Circuit design of the predator–prey system for m = 0.6.
Circuit design of the predator–prey system for m = 0.6.

Fig. 22

Temporal evolution via MultiSIM software (m = 0.6).
Temporal evolution via MultiSIM software (m = 0.6).

Fig. 23

Phase portrait via MultiSIM software (m = 0.6).
Phase portrait via MultiSIM software (m = 0.6).

Fig. 24

STM3278 Technology.
STM3278 Technology.

Fig. 25

Experimental temporal evolution (m = 0.2).
Experimental temporal evolution (m = 0.2).

Fig. 26

Experimental phase portrait (m = 0.2).
Experimental phase portrait (m = 0.2).

Fig. 27

Experimental temporal evolution (m = 0.4).
Experimental temporal evolution (m = 0.4).

Fig. 28

Experimental phase portrait (m = 0.4).
Experimental phase portrait (m = 0.4).

Fig. 29

Experimental temporal evolution (m = 0.6).
Experimental temporal evolution (m = 0.6).

Fig. 30

Experimental phase portrait (m = 0.6).
Experimental phase portrait (m = 0.6).

Predator–prey model analysis_

EquilibriumSingularitiesPhase portraits
Language: English
Page range: 1 - 16
Published on: Sep 3, 2018
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2018 Afef Ben Saad, Ali Hmidet, Olfa Boubaker, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.