Have a personal or library account? Click to login

Image Fusion Based on Joint Nonsubsampled Contourlet and Overcomplete Brushlet Transforms

By:
Open Access
|Dec 2016

References

  1. Qu Xiao-Bo, Yan Jing-Wen, Zhu Zi-Qian, Chen Ben-Gang. “Multipulse coupled neural networks”. In Proceedings of International Conference on Bio-Inspired Computing Theories and Applications. Zhengzhou, China: Publishing House of Electronics Industry. 2007,pp.563-565.
  2. M N Do, M Vetterli. “The contourlet transform:an efficient directional multiresolution image representation” [J].IEEE Transactions on Image Processing,Vol 14,No.10. 2005,pp.2091- 2106.10.1109/TIP.2005.85937616370462
  3. Arthur L. da Cunha, Jianping Zhou.” The Nonsubsampled Contourlet Transform:Theory, Design, and Applications”. IEEE Transactions on Image Processing, Vol 15,No. 10, October,2006.10.1109/TIP.2006.877507
  4. F. G. Meyer and R. R. Coifman. “Brushlet: A tool for directional image analysis and image compression”. Applied and Computational Harmonic Analysis, Vol 4, 1997,pp.147–187.10.1006/acha.1997.0208
  5. Mingxin Yang,”Optimal Cluster Head Number Based On Enter For Datd Aggregation In Wireless Sensor Networks”,International Journal on Smart Sensing and Intelligent Systems (S2IS), Dec 2015,pp.1935 – 195510.21307/ijssis-2017-837
  6. Ahadul Imam, Justin Chi, Mohammad Mozumdar,”Data Compression And Visualization For Wireless Sensor Networks “International Journal on Smart Sensing and Intelligent Systems (S2IS), Dec 2015,pp.2083- 211510.21307/ijssis-2017-844
  7. Payman Moallem1,”Compensation Of Capacitive Differential Pressure Sensor Using Multi Layer Perceptron Neural Network”,International Journal on Smart Sensing and Intelligent Systems (S2IS), SEPTEMBER 2015,pp.1443 – 146310.21307/ijssis-2017-814
  8. Daode Zhang,Yangliu Xue,Xuhui Ye and Yanli Li.”Research On Chips’ Defect Extraction Based On Image-matching “,International Journal on Smart Sensing and Intelligent Systems (S2IS), Mar. 10. 2014,pp.321 – 33610.21307/ijssis-2017-658
  9. Feng LUO and Fengjian HU,”A Comprehensive Survey Of Vision Based Vehicle Intelligent Front Light System “International Journal on Smart Sensing and Intelligent Systems (S2IS), June 1. 2014,pp.701 – 72310.21307/ijssis-2017-677
  10. E.Angelini,A.Laine, et.al.”LVvolumequantification via spatio temporal analysis of real-time 3D echocardiography”. IEEE Transactions on Medical Imaging. Vol. 20, No.6, 2001,pp.457-469.10.1109/42.92961211437106
  11. Guohui Wu, Xingkun Li, Jiyang Dai.”Improved Measure Algorithm Based On CoSaMP For Image Recovery “International Journal on Smart Sensing and Intelligent Systems (S2IS), June 1. 2014,pp.724 – 73910.21307/ijssis-2017-678
  12. Wenqing Chen, 2 Tao Wang and 3 Bailing Wang.”Design Of Digital Image Encryption Algorithm Based On Mixed Chaotic Sequences”.International Journal on Smart Sensing and Intelligent Systems (S2IS), Dec. 1. 2014,pp.1453 – 146910.21307/ijssis-2017-715
  13. S.Mary Praveena, Dr.ILA.Vennila.” Image Fusion By Global Energy Merging”. International Journal of Recent Trends in Engineering, Vol 2, No. 7, November 2009.
  14. Zhouping Y. “Fusion Algorithm Of Optical Images And Sar With Svt And Sparse Representation”. International Journal on Smart Sensing and Intelligent Systems, Vol. 8, No. 2, June 2015.10.21307/ijssis-2017-799
  15. Yongqing Wang, “New Intelligent Classification Method Based On Improved Meb Algorithm”, International Journal on Smart Sensing and Intelligent Systems, Vol. 7, No. 1, 2014, pp. 72-95.10.21307/ijssis-2017-646
  16. Yongqing Wang1 and Xiling Liu.”Face Recognition Based On Improved Support Vector Clustering “International Journal on Smart Sensing and Intelligent Systems (S2IS), Dec. 1. 2014,pp.1807 – 182910.21307/ijssis-2017-734
  17. Donoho D L, “Compressed sensing”, IEEE Transactions on Information Theory, vol. 52, No. 4, 2006, pp. 1289-1306.10.1109/TIT.2006.871582
  18. Yang C, Wright J, Huang T, Ma Y “Image super-resolution via sparse representation”.IEEE Trans. Image Process, vol. 19, No. 11, 2010, pp. 2861-2873.10.1109/TIP.2010.205062520483687
  19. James E. Fowler, Sungkwang Mun, and Eric W. Tramel,Multi-scale block compressed sensing with smoothed projected landweber reconstruction, 19th European Signal Processing Conference, Barcelona, Spain,2011.
  20. Easley G, Labate D, Lim W.”Sparse Directional image representations using the discrete Shearlet transform”.Applied and Computational Harmonic Analysis, Vol. 7, 2008,pp.25-46.10.1016/j.acha.2007.09.003
  21. Do T T, Tran T D, Lu G. “Fast compressive sampling with structurally random matrices”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D C: IEEE Computer Society Press, 2008,pp.3369-3372.10.1109/ICASSP.2008.4518373
  22. Chen SSB, Donoho D L, M A Saunders. “Atomic decomposition by basis pursuit”, SIAM Journal on Scientific Computation, vol. 20, No. 1, 2010, pp. 33-61.10.1137/S1064827596304010
  23. Tropp J A. “Greed is good: Algorithmic results for sparse approximation”. IEEE Transactions on Information Theory, vol. 50, No. 10, 2004, pp. 2231-2242.10.1109/TIT.2004.834793
  24. Blumensath T, Davies M E,Normalised, “iterative hard thresholding:guaranteed stability and performance”,IEEE Journal of Selected Topics in Signal Processing, vol. 4, No. 2, 2010, pp. 298–309.10.1109/JSTSP.2010.2042411
  25. Bai Q, Jin C. “Image Fusion And Recognition Based On Compressed Sensing Theory”. International Journal on Smart Sensing & Intelligent Systems, Vol. 8, No. 1, 2015.10.21307/ijssis-2017-753
  26. Petrovic V, Xydeas C. “On the effects of sensor noise in pixel-level image fusion performance”. In: Proceedings of the3 rd International Conference on Image Fusion. Paris, France:IEEE, 2000,pp.14-19.
Language: English
Page range: 2186 - 2203
Submitted on: Jul 12, 2015
Accepted on: Jan 11, 2016
Published on: Dec 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Zhang Pai, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.