Have a personal or library account? Click to login

A Blind Assessment Method of Image Compression Quality Based on Image Variance

By:
Open Access
|Dec 2016

References

  1. Z. Wang, “Applications of objective image quality assessment methods,” IEEE Signal Processing Magazine, vol.28, no.6, pp.137-142, Nov. 2011.10.1109/MSP.2011.942295
  2. Y. Q. WANG, “Application of local variance in image quality assessment,” Chinese Optics, vol.4, no.5, pp.531-535, May. 2011.
  3. J. Galbally, S. Marcel and J. Fierrez, “Image Quality Assessment for Fake Biometric Detection: Application to Iris, Fingerprint and Face Recognition,” IEEE Transactions on Image Processing, vol.23, no.2, pp.710-724, Feb. 2014.10.1109/TIP.2013.229233226270913
  4. Qiuchan Bai and Chunxia Jin, Image Fusion and Recognition Based on Compressed Sensing Theroy, International Journal on Smart Sensing and Intelligent Systems, vol. 8, no. 1, pp. 159 – 180, Mar. 2015.10.21307/ijssis-2017-753
  5. Liu Erlin, Wang Meng, Teng Jianfeng, and Li Jianjian, Automatic Segmentation of Brain Tumor Magnetic Resonance Imaging Based on Multi-constrains and Dynamic Prior, International Journal on Smart Sensing and Intelligent Systems, vol. 8, no. 2, pp.1031-1049, Jun. 2015.
  6. A. M. Eskicioglu, P. S. Fisher, Image quality measures and their performance, IEEE Transactions on Communications, vol.43, no.12, pp.2959–2965, Dec. 1995.
  7. Z. Wang, A. C. Bovik, H. R. Sheikh, et al., “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, vo.13, no.4, pp.600-612, Apr. 2004.10.1109/TIP.2003.819861
  8. Z. Wang, A. C. Bovik, “Modern Image Quality Assessment,” Morgan and Claypool Publishing Co. New York, 2006, pp.11-13.10.1007/978-3-031-02238-8
  9. J. C. Zhou, R. W. Dai, X. B. Hua, “Overview of Image Quality Assessment Research,” Computer Science, vol.35, no.7, pp.1-4, Jul. 2008
  10. S. Q. Liu, L. F. Wu, Y. L. Gong, et al., “Overview of image quality assessment”, SCIENCEPAPER ONLINE, vol.6, no.7, pp.501-506, Jul. 2011
  11. W. J. Zhou, G. Y. Jiang, M. Yua, et al., “Reduced reference stereoscopic image quality assessment using digital watermarking,” Computers & Electrical Engineering, vol.40, no.8, pp.104–116, Nov. 201410.1016/j.compeleceng.2014.06.007
  12. S. D. Chen, “A Statistical Evaluation of Image Quality Analyzer for Assessment of Histogram Equalization-based Contrast Enhancement Methods,” Journal of Applied Sciences, vol.14, pp.18 -25, Jan, 2014.10.3923/jas.2014.18.25
  13. J. H. Deng, M. Qian, G. Q. Qiao, et al., “Analysis of Image Quality Assessment with Markov Random Field Oriented on Low Dose CT Images,” Sensors & Transducers, vol.169, no.4, pp.193-198, Apr. 2014
  14. Anu, Komal, Shipra Khurana, Amit Kumar, “Comparative Analy-sis of Image Quality Assessment Using HVS Model,” International Journal of Innovative Research in Computer and Communication Engineering, vol.2, no.7, pp.5033-5038, Jul. 2014
  15. Figueras i Ventura, R.M., Vandergheynst, P., Frossard, P., “Low-rate and flexible image coding with redundant representations,” IEEE Transactions Image Processing, vol.15, no.3, pp.726-739, Mar. 2006.10.1109/TIP.2005.860596
  16. D. Xu, M. D. Adams, “Design of High-Performance Filter Banks for Image Coding,” IEEE International Symposium on Signal Processing and Information Technology, Vancouver, 2006, pp.868-873.10.1109/ISSPIT.2006.270920
  17. Y. Liang and S. E. Budge, “Classified vector SPIHT for wavelet image coding,” in Proc. IEEE Int. Conf. Image Processing (ICIP). IEEE, Oct. 2006, pp. 1865–1868.10.1109/ICIP.2006.313099
  18. Y. D. Wu, H. Y. Zhang, R. Duan, “Total variation based perceptual image quality assessment modeling,” Journal of Applied Mathematics, Journal of Applied Mathematics, Volume 2014 (2014), Article ID 294870, [Online] Available From: http://dx.doi.org/10.1155/2014/29487010.1155/2014/294870
  19. Yongqing Wang and Chunxiang Wang, Computer Vision-based Color Image Segmentation with Improved Kernel Clustering, International Journal on Smart Sensing and Intelligent Systems, vol. 8, no. 3, pp. 1706 – 1729, Sep. 201510.21307/ijssis-2017-826
  20. M. Takezawa,, M. Haseyama, H. Kitajima, “Ultra low bit-rate image coding algorithm based on fractal image coding,” in Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis(ISPA), IEEE, Sept. 2003, vol.2, pp.1013-1017.
  21. W. Yang, L. H. Wu, S. Y. Li, Y. Fan, “Method of image quality assessment based on region of interest,” Journal of Computer Applications, vol.28, no.5, pp.1310-1312, May. 2008.
  22. R. H. Jiao, Y. C. Li, J. B. Hou, “Remote sensing image compress-ion based on visual modeland image feature,” Journal of Beijing University of Aeronautics and Astronautics, vol.31, no.2, pp.197-201, Feb. 2005.
  23. Z. Q. Yang, Y. H. Yi, Q. Q. Qin, “Adaptive Image Compression Based on Visual Masking Effect,” Geomatics and Information Science of Wuhan University, vol.31, no.9, pp.802-805, Sep. 2006.
  24. H. F. Li, X. X. Ding, H. Y. Qian, “Image compression algorithm based on integer wavelet transform,” Computer Engineering and Design, vol.27, no.11, pp.2015-2016, Jun. 2006.10.31193/ssap.isbn.9787509784891
  25. J. Chen, “The Review of the Static Image Compression Standard,” Computer Applications and Software, vol.22, no.9, pp.130-132, Oct. 2005.
  26. F. Gao, X. B. Gao, “Active Feature Learning and Its Application in Blind Image Quality Assessment,” Chinese Journal of Computers, vol.37, no.10, pp.2228-2234, Oct. 2014.
  27. H. R. Sheikh, Z. Wang, L. Cormack, et al., “Blind quality assessment for JPEG2000 compressed images,” in Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, IEEE, 2002, vol.2, pp. 1735-1739.
Language: English
Page range: 2131 - 2148
Submitted on: Jul 29, 2015
Accepted on: Jan 18, 2016
Published on: Dec 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2016 Qun Zhou, Xiongwei Liu, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.