V. Reddy, C. Sanderson and B.C. Lovell, “Improved foreground detection via block-based classifier cascade with probabilistic decision integration”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 23, pp. 83-93, January 2013.10.1109/TCSVT.2012.2203199
E.A.J. Abadi, S.A. Amiri, M. Goharimanesh and A. Akbari, “Vehicle model recognition based on using image processing and wavelet analysis”, International Journal on Smart Sensing and Intelligent Systems, Vol. 8, No.4, pp. 2212-2230, December 2015.
Y.L. Tian, A. Senior and M. Lu, “Robust and efficient foreground analysis in complex surveillance videos”, Machine Vision and Applications, Vol. 23, pp. 967-983, September 2012.10.1007/s00138-011-0377-1
S.H Kim, K. Sekiyama, T. Fukuda, “Pattern Adaptive and Finger Image-guided Keypad Interface for In-vehicle Information Systems”, International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 3, pp. 572-591, September 2008.10.21307/ijssis-2017-308
T. Bouwmans, F.E. Baf, and B. Vachon, “Background modeling using mixture of gaussians for foreground detection: a survey”, Recent Patents on Computer Science, Vol. 1, pp. 219-237, 2008.10.2174/2213275910801030219
S. Brutzer, B. Hoferlin, and G. Heidemann, “Evaluation of background subtraction techniques for video surveillance”, Computer Vision and Pattern Recognition (CVPR), Vol.32, pp.19371944, 2011.
T. Bouwmans, “Traditional and recent approaches in background modeling for foreground detection: an overview”, Computer Science Review, Vol. 11, pp. 31–66, May 2014.10.1016/j.cosrev.2014.04.001
X. H. Fang, W. Xiong, B. J. Hu and L. T, Wang, “A moving object detection algorithm based on color information”, Journal of Physics: Conference Series, Vol. 48, pp. 384, October 2006.10.1088/1742-6596/48/1/072
H. Bhaskar, L. Mihaylova and A. Achim, “Video foreground detection based on symmetric alpha-stable mixture models”, Circuits and Systems for Video Technology, Vol. 20, pp. 11331138, 2010.
C. Silva, T. Bouwmans and C. Frélicot, “An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos”, 2014.10.5220/0005266303950402
K. Kim and L.S. Davis, “Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering”, pp. 98-109, 2006.10.1007/11744078_8
Z. Zivkovic, “Improved adaptive Gaussian mixture model for background subtraction”, Pattern Recognition, Vol. 2, pp. 28-31, August 2004.10.1109/ICPR.2004.1333992
B. White and M. Shah, “Automatically tuning background subtraction parameters using particle swarm optimization”, Multimedia and Expo, pp. 1826-1829), July, 2007.
M. Mason and Z. Duric, “Using histograms to detect and track objects in color video”, Applied Imagery Pattern Recognition Workshop, pp. 154-159, October, 2001
T. Ojala, M. Pietikainen and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions”, Pattern Recognition, Vol. 1, No. 1, pp. 582-585, November, 1994.
G. Xue, L. Song, J. Sun and M. Wu, “Hybrid center-symmetric local pattern for dynamic background subtraction”, Multimedia and Expo (ICME), pp. 1-6, July, 2011.
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods”, Pattern Analysis and Machine Intelligence, Vol. 34, No. 11, pp. 2274-2282, 2012.
M. Heikkilä, M. Pietikäinen and C. Schmid, “Description of interest regions with local binary patterns”, Pattern recognition, Vol. 42, No. 3, pp. 425-436, 2009.10.1016/j.patcog.2008.08.014
Y. Zheng, C. Shen, R. Hartley and X. Huang, “Pyramid center-symmetric local binary/trinary patterns for effective pedestrian detection”, ACCV, pp. 281-292, 2011.10.1007/978-3-642-19282-1_23
K. Kim, T.H. Chalidabhongse, D. Harwood and L. Davis, “Real-time foregroundbackground segmentation using codebook model”, Real-time imaging, Vol. 11, No. 3, pp. 172185, 2005.
P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture model for real-time tracking with shadow detection”, Video-based surveillance systems, pp. 135-144, 2012.10.1007/978-1-4615-0913-4_11