Have a personal or library account? Click to login

PSO Algorithm for Single and Multiple Odor Sources Localization Problems: Progress and Challenge

Open Access
|Sep 2016

References

  1. Wisnu Jatmiko, T. Fukuda, F. Arai, and B. Kusumoputro, Artificial Odor Discrimination System Using Multiple Quartz Resonator Sensor and Various Neural Networks for Recognizing Fragrance Mixtures, IEEE Sensors Journal, vol. 6. no. 1, pp. 223233, Feb. 2006.
  2. B. Kusumoputro, H. Budiarto, W. Jatmiko. Fuzzy-neuro LVQ and its comparison with fuzzy algorithm LVQ in artificial odor discrimination system. ISA Transaction 41, pp. 395-407. 2002.10.1016/S0019-0578(07)60097-4
  3. W. Jatmiko, Rochmatullah, B. Kusumoputro, K. Sekiyama, T. Fukuda. Fuzzy Learning Vector Quantization Based on Particle Swarm Optimization For Artificial Odor Dicrimination System. WSEAS Transaction on System, Issues 12, Volume 8. 2009.
  4. W. Jatmiko, T. Fukuda, T. Matsuno, F. Arai and B. Kusumoputro. Robotic Applications for Odor-Sensing Technology: Progress and Challenge. WSEAS Transaction on System:Issue 7, Volume 4, July 2005.
  5. Aprinaldi, I. Habibie, R. Rahmatullah, A. Kurniawan, A. Bowolaksono, W. Jatmiko, B. Wiweko, ArcPSO: Ellipse Detection Method using Particle Swarm Optimization and Arc Combination, in: Proceedings of the International Conference on Advanced Computer Science and Information Systems (ICACSIS), Jakarta, 2014, pp.408-413.10.1109/ICACSIS.2014.7065877
  6. Aprinaldi, G. Jati, A. A. S. Gunawa, A. Bowolaksono, S. W. Lestari, W. Jatmiko, Human Sperm Tracking using Particle Swarm Optimization combined with Smoothing Stochastic Sampling on Low Frame Rate Video, in: Proceedings of 26th International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, 2015.10.1109/MHS.2015.7438308
  7. W. Jatmiko, D. M. J. Purnomo, M. R. Alhamidi, A. Wibisono, H. A. Wisesa A. Bowolaksono, and D. Hendrayanti, ArcPSO: Algal Growth Rate Modeling and Prediction Optimization Using Incorporation of MLP and CPSO Algorithm, in: Proceedings of 26th International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, 2015.10.1109/MHS.2015.7438293
  8. H. Ishida, Y. Wada, and Matsukura, H. (2012). Chemical sensing in robotic applications: A review. Sensors Journal, IEEE, 12(11):3163—3173.
  9. F. Li, Q. H. Meng, J. G. Li, etal.,P-PSO algorithm based multi-robot odor source search in ventilated indoor environment with obstacles, Acta Automatica Sinica 35(12)(2009)1573—1579.10.3724/SP.J.1004.2009.01573
  10. P. Neumann, M. Bartholmai, and V. H. Bennetts, V. (2012a). Adaptive gas source localization strategies and gas distribution mapping using a gas-sensitive micro-drone. In Proceedings of the 16th ITG / GMA Conference, pp. 800— 809.10.5162/sensoren2012/P5.4
  11. Z. Liu and T.F. Lu (2008). Odor source localization in complicated indoor environments. In Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on, pages 371—377. IEEE.
  12. A. T. Hayes, A. Martinoli and R. M. Goodman. Distributed odor source localization. IEEE Sensors Journal, vol. 2, no.3, pp 260-271, June 2002.10.1109/JSEN.2002.800682
  13. H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas and J. Janata, Plume-Tracking Robots: A New Application of Chemical Sensors, Biol. Bull. 200: 222-226. (April 2001).10.2307/154332011341588
  14. W. Jatmiko, B. Kusumoputro, and Yuniarto, Improving the Artificial Odor and Gas Source Localization System Using the Semiconductor Gas Sensor Based on RF Communication, Proc. of IEEE APCASS, October 2002.
  15. T. Lochmatter, X. Raemy, A. Martinoli. Odor Source Localization with Mobile Robots. Ecole Polytechnique Federale Lausanne, Info Science, 2007.
  16. A. T. Hayes, A. Martinoli and R. M. Goodman. Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica, 21(4):427-441, 2003.
  17. Y. Zou, D. Luo, and W. Chen, (2009). Swarm robotic odor source localization using ant colony algorithm. In Control and Automation, 2009. ICCA 2009. IEEE International Conference on, pages 792-796. IEEE.10.1109/ICCA.2009.5410516
  18. M. L. Cao, Q. H. Meng, X. W. Wang, B. Luo, M. Zeng, and W. Li (2013). Localization of multiple odor sources via selective olfaction and adapted ant colony optimization algorithm. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on, pages 1222-1227. IEEE.10.1109/ROBIO.2013.6739631
  19. M. Wandel, A. Lilienthal, T. Duckett, U. Weimar, and A. Zell. Gas distribution in unventilated indoor environments inspected by a mobile robot. In Proceedings of the IEEE International Conference on Advanced Robotics (ICAR03), 2003.
  20. X. Cui, C. T. Hardin, R. K. Ragade, and A. S. Elmaghraby. A swarm-based fuzzy logic control mobile sensor network for hazardous contaminants localization. In Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS04), 2004.
  21. Ishida, H. Nakayama, G. Nakamoto and T. Moriizumi, T. Controlling a gas/odor plume tracking robot based on transient responses of gas sensors, IEEE Sensors Journal, Vol. 5. No.3. June 2005.10.1109/JSEN.2004.839597
  22. D. Zarzhitsky, D. Spears, and W. Spears. Distributed Robotics Approach to Chemical Plume Tracing. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05), 2005.10.1109/IROS.2005.1545428
  23. R. A. Russell and A. H. Purnamadjaja. Odor and airflow: Complementary senses for a humanoid robot. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002.
  24. Wisnu Jatmiko, K. Sekiyama and T. Fukuda, A PSO-based Mobile Robot for Odor Source Localization in Extreme Dynamic Advection-Diffusion Environment with Obstacle: Theory, Simulation and Measurement. IEEE Computational Intelligence Magazine: Special Issue on Biometric. Vol. 2, Issue 2, pp. 37-51, May 2007.10.1109/MCI.2007.353419
  25. M. Dadgar, S. Jafari, & A. Hamzeh. A PSO-basedmulti-robot cooperation methodfor target searching in unknown environments. Neurocomputing, 177, 62-74. 2016.10.1016/j.neucom.2015.11.007
  26. K. Hassani, & W. Lee, W. Multi-objective design of state feedback controllers using reinforced quantum-behaved particle swarm optimization. Applied Soft Computing Journal Vol. 41, 66-76, 2016.10.1016/j.asoc.2015.12.024
  27. Y. Zhang, J. Zhang, G. Hao, & W. Zhang. Localizing odor source with multi-robot based on hybrid particle swarm optimization. In the Proceedings of - International Conference on Natural Computation 2016, pp. 902-906. January 2016.10.1109/ICNC.2015.7378110
  28. A. T. Hayes, A. Martinoli and R. M. Goodman. Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica, 21(4):427-441, 2003.
  29. Y. Zou, D. Luo, and W. Chen, (2009). Swarm robotic odor source localization using ant colony algorithm. In Control and Automation, 2009. ICCA 2009. IEEE International Conference on, pages 792-796. IEEE.10.1109/ICCA.2009.5410516
  30. M. L. Cao, Q. H. Meng, X. W. Wang, B. Luo, M. Zeng, and W. Li (2013). Localization of multiple odor sources via selective olfaction and adapted ant colony optimization algorithm. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on, pages 1222-1227. IEEE.10.1109/ROBIO.2013.6739631
  31. Jay A. Farrel et al. Filament-Based Atmospheric Dispersion Model to Achieve Short TimeScale Structure of Odor Plumes. Environment Fluid Mechanics, vol 2, pp. 143-169, 2002.10.21236/ADA399832
  32. X. Hu, R. Eberhart. Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System. Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1666-1670, 2002.
  33. T. M. Blackwell and P. J. Bentley, ‘‘Dynamic Search with Charged Swarms”, In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 19-26 2002.
  34. W. Jatmiko, A. Nugraha, R. Effendi, W. Pambuko, R. Mardian, K. Sekiyama AND T. Fukuda. Localizing Multiple Odor Sources in a Dynamic Environment Based on Modified Niche Particle Swarm Optimization with Flow of Wind. WSEAS Transaction on Systems, Issues 11, Vol 8. 2009.
  35. Branke, J. Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publisher, 2002.10.1007/978-1-4615-0911-0
  36. A. Carlisle, G. Dozier. Adapting Particle Swarm Optimization to Dynamic Environment. Proceeding of the International Conference on Artificial Intelligence, pp. 429 - 434, 2000.
  37. X. Zhang, et al. Two-Stage Adaptive PMD Compensation in a 10 Gbit/s Optical Communication System Using particle Swarm Optimization Algorithm. Optics Communications, 231(1-6):233-242, 2004.10.1016/j.optcom.2003.12.045
  38. J.P. Coelho, P.B. De Moura Oliveira, and J.Boa Ventura Cunha. Non-Linear Concentration Control System Design Using a New Adaptive PSO. In Proceedings of the 5th Portuguese Conference on Automatic Control, 2002.
  39. T. M. Blackwell, “Swarms in Dynamic Environment”, In Lecture Notes in Computer Science, Proceedings of the Genetic and Evolutionary Computation, volume 2723, pp. 1-12, 2003.10.1007/3-540-45105-6_1
  40. Wisnu Jatmiko, Petrus Mursanto, Benyamin Kusumoputro, K. Sekiyama and T. Fukuda, Modified PSO Algorithm Based on Flow of Wind for Odor Source Localization Problems in Dynamic Environments, WSEAS Transaction on System, Issue 3, Volume 7, pp. 106-113, March 2008.
  41. D. W. Gong, C. L. Qi, Y. Zhang, et al., Modified particle swarm optimization for odor source localization of multi-robot, in: Proceedings of the 2011 IEEE Congress on Evolutionary Computation, USA, 2011, pp.130-136.10.1109/CEC.2011.5949609
  42. T. M. Blackwell and P. J. Bentley, ‘‘Don’t Push Me! Collision-Avoiding Swarms”, In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pp. 1691-1696, May 2002.
  43. H. Hasrinda, Ranged Multi-Niche Particle Swarm Optimization for Multi Odor Source Localization: Simulation and Analysis, M.Kom. thesis, Faculty of Computer Science, Universitas Indonesia, Depok, 2014.
  44. K.E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, et al., Stretching technique for obtaining global minimizers through particle swarm optimization, in: Proceedings of the Particle Swarm Optimization Workshop, Indianapolis, 2001,pp.22-29.
  45. S. Das, S. Maity, B. Y. Qu, et al., Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art, Swarm and Evolutionary Computation 1(2) (2011) 71-88.10.1016/j.swevo.2011.05.005
  46. D. E. Goldberg, J. Richardson, Genetic algorithm with sharing for multimodal function optimization, in: Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, Hillsdale, 1987, pp.41-49.
  47. J. Kennedy, Stereotyping: improving particle swarm performance with cluster analysis, in: Proceedings of the Congress on Evolutionary Computation, Piscataway, 2000, pp.1507-1512.
  48. K.E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, et al., Stretching technique for obtaining global minimizers through particle swarm optimization, in: Proceedings of the Particle Swarm Optimization Workshop, Indianapolis, 2001,pp.22-29.
  49. X. Li, Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization, Lecture Notesin Computer Science 3102(2004)105-116.10.1007/978-3-540-24854-5_10
  50. R. Brits, A. P. Engelbrecht, F. Vanden Bergh, Locating multiple optima using particle swarm optimization, Applied Mathematics and Computation 189(2) (2007)1859-1883.10.1016/j.amc.2006.12.066
Language: English
Page range: 1431 - 1478
Submitted on: May 17, 2016
Accepted on: Jul 28, 2016
Published on: Sep 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2016 W. Jatmiko, F. Jovan, R.Y.S. Dhiemas, M.S. Alvissalim, A. Febrian, D. Widiyanto, D.M.J. Purnomo, H.A. Wisesa, T. Fukuda, K. Sekiyama, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.