Have a personal or library account? Click to login

References

  1. N.A. Jarad, P. Wilkinson, M.C. Pearson, R.M. Rudd, “A new high resolution computed tomography scoring system for pulmonary fibrosis, pleural disease and emphysema in patients with asbestos related disease”, Br. J. Ind. Med. Vol. 49, N.2, pp. 73-84.10.1136/oem.49.2.7310120711536823
  2. I. Jabłoński, “Properties of occlusional devices in extended time-frequency analysis of post-interrupter respiratory signals”, IEEE Sensors J., Vol. 12, N.3, pp. 504 – 511, 2012.10.1109/JSEN.2010.2101059
  3. S. Urooj, M. Khan, Aq Ansari, A. Lay-Ekuakille, A.K. Salhan, “Prediction of Quantitative Intrathoracic Fluid Volume to Diagnose Pulmonary Edema Using Labview”, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 15, N. 8, August 2012, 859– 864, 2011.10.1080/10255842.2011.56505421598127
  4. A.Lay-Ekuakille, G. Vendramin, A. Trotta, “Spirometric Measurement Post-Processing: Expiration Data Recovery”, IEEE Sensors Journal, Vol.10, n.1, pp.25-33, IEEE Sensors Journal, 2010.10.1109/JSEN.2009.2035743
  5. U. Frey, P.J.F.M. Merkus (Eds.), “Paediatric lung function, European Respiratory Monograph”, European Respiratory Society, Vol. 47, pp.1-31, 2010.
  6. R.E. Dales, K.L. Vandemhen, J. Clinch, A.D. Aaron, “Spirometry in the primary care setting. Influence on clinical diagnosis and management of airflow obstruction”, Chest., Vol. 128, N.4, pp. 2443-2447.10.1378/chest.128.4.244316236907
  7. S. Loom et al., “Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests”, Thorax. Vol. 62, N. 4, pp. 341–347, 2007.10.1136/thx.2006.068262209246717121870
  8. M. Castro, “Lung imaging in asthmatic patients: the picture is clearer, J. Allergy Clin. Immunol.”, Vol.128, pp.467-478, 2011.10.1016/j.jaci.2011.04.051318791621636118
  9. A. Lay-Ekuakille,P. Vergallo, A. Trabacca, M. De Rinaldis, F. Angelillo, F. Conversano, S. Casciaro, “Low-Frequency Detection in ECG Signals and Joint EEG-Ergospirometric Measurements for Precautionary Diagnosis”, Measurement, Vol. 46, N. 1, pp 97-107, 2013.10.1016/j.measurement.2012.05.024
  10. Y. Cui, B. Zhao, T.J. Akhurst, J. Yan, L.H. Schwartz, “CT-guided automated detection of lung tumors on PET images”, Proc. of SPIE, Vol. 6915, Feb 19-21, 2008.
  11. J. L. Mulshine, “Screening for lung cancer: in pursuit of pre-metastatic disease”, Nature Reviews Cancer, Vol.3 pp.65-73, January 2002.10.1038/nrc97212509768
  12. S. Brandman, Jane P. Ko, “Pulmonary Nodule Detection, Characterization, and Management With Multidetector Computed Tomography”, J Thorac Imaging, Vol. 26, n. 2, pp.90-105, May 2011.10.1097/RTI.0b013e31821639a921508732
  13. F. Conversano, A. Greco, E. Casciaro, A. Ragusa, A. Lay-Ekuakille, S. Casciaro, “Harmonic Ultrasound Imaging of Nanosized Contrast Agents for Multimodal Molecular Diagnoses”, IEEE Transactions on Instrumentation & Measurement, Vol.61, N. 7, pp. 1848-1856, 2012.
  14. S. Casciaro, F. Conversano, L. Massoptier, R. Franchini, E. Casciaro, A. Lay-Ekuakille, “A Quantitative and Automatic Echographic Method for Real-Time Localization of Endovascular Devices”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, n.10, pp. 2107-17, 2011.
  15. F. Conversano, R. Franchini, S. Casciaro, A. Lay-Ekuakille, “In Vitro Evaluation and Theoretical Modelling of the Dissolution Behaviour of a Microbubble Contrast Agent for Echographic Imaging”, IEEE Sensors Journal, vol.12, n.3, pp. 496-503, 2012.10.1109/JSEN.2011.2109707
  16. G. Soloperto, F. Conversano, A. Greco, E. Casciaro, A. Ragusa, A. Lay-Ekuakille, S. Casciaro, “Assessment of the Enhancement Potential of Halloysite Nanotubes for Echographic Imaging”, IEEE MEMEA 2013, may 4-5, 2013, Canada.10.1109/MeMeA.2013.6549700
  17. F. Natterer, E.L. Ritman, “Past and future directions in X-ray computed tomography (CT)”, Int. J. Imaging Syst. Technol., Vol. 12, N.4, pp.175–187, 2002.10.1002/ima.10021
  18. R.O. Duda, P.E. Hart, “Use of the Hough transformation to detect lines and curves in pictures”, Comm. ACM. Vol. 15, N.1, pp.11-15, 1972.10.1145/361237.361242
  19. V.A. Shapiro, V.H. Ivanov, “Real-time Hough/Radon transform: algorithm and architectures”; in proceedings of the International Conference on Image Processing, November, 13-16, Austin USA, 1994.
  20. [20]D. Antolovic, “Review of the Hough transform method with an implementation of the fast Hough variant for line detection”, htpp://www.cs.indiana.edu/ftp/techreports/TR663.pdf., Indiana University, 2008.
  21. J. Lladós, “The Hough transform as a tool for image analysis”, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.469.
  22. D.B.L. Bong, K.H. Lim, “Application of fixed-radius Hough transform in eye detection”, Int. J. Intell. Inform. Technol. Appl. Vol. 2, N.3, pp. 121-127, 2009.
  23. R.Y. Takimoto et al., “Detecting function patterns with interval Hough transform”; in proceedings of 9th IEEE/IAS International Conference on Industry Applications (INDUSCON), São Paolo, Brazil, November, 8-10, 2010.10.1109/INDUSCON.2010.5740072
  24. J. Illingworth, J. Kittler, “A survey of the Hough transform”, CVGIP, Vol.44, N.1, pp. 87-116, 1988.10.1016/S0734-189X(88)80033-1
  25. S.J.Kjelgaard Pedersen, “Circular Hough transform”, http://www.cvmt.dk/education/teching/e07/MED3/IP/SimonPedersenCircularHoughTransform.pdf, November 2007.
  26. D.H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes”, Pattern Recogn., Vol. 13, N. 2, pp. 111-122, 1981.10.1016/0031-3203(81)90009-1
  27. H. Li, M.A. Lavin, R.J. LeMaster, “Fast Hough Transform: a hierarchical approach”, CVGIP., Vol.36, N. 2-3, pp.139-161, 1986.10.1016/0734-189X(86)90073-3
  28. R. Smith, K. Najarian, K. Ward, “A hierarchical method based on active shape models and directed Hough transform for segmentation of noisy biomedical images; application in segmentation of pelvic X-ray images”, BMC Med. Informatics and Decision Making. Vol.9, N.1, Suppl 1:S2, 200910.1186/1472-6947-9-S1-S2277391719891796
  29. S. Hu, E.A. Hoffman, J.M. Reinhardt, “Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images”, IEEE Trans. Med. Imag. Vol. 20, N. 6, pp. 490-498, 2001.10.1109/42.92961511437109
  30. R.S. Tavares et al., “Lung movement determination in temporal sequences of MR images using Hough transform and interval arithmetics”; in proceedings of the 7th IFAC Symposium on Modelling and Control in Biomedical Systems, August, 12-14, Aalborg, Denmark, 2009.
  31. R.S. Tavares et al., Temporal segmentation of lung region MR image sequences using Hough transform; in proceedings of 32nd Annual International Conference of the IEEE EMBS, August 31-September 4, Buenos Aires, Argentina. (2010).10.1109/IEMBS.2010.562802321097290
  32. M. Feuerstein, T. Kitasaka, K. Mori, “Adaptive model based pulmonary artery segmentation in 3-D Chest CT”; in proceedings of SPIE Medical Imaging, February 2010, San Diego USA.10.1117/12.843750
  33. M.S. Nixon, A.S. Aguado, “Feature extraction and image processing”, II Edition, University of Southampton, 2008, UK.
  34. M. Rizon et al., “Object detection using circular Hough Transform”, American Journal of Applied Sciences. Vol. 12, pp.1606-1609, 2005.
  35. D.G. Lowe, “Object recognition from local scale-invariant features”, in proceedings of Computer vision Conf., Kerkyra, Greece, 1999.10.1109/ICCV.1999.790410
  36. T. A. Lasko, J.G. Bhagwat, K.H. Zou, L. Ohno-Machado, “the use of receiver operating characteristic curves in biomedical informatics”, Journal of Biomedical Informatics, Vol.38, pp. 404-415, 2005.10.1016/j.jbi.2005.02.00816198999
  37. https://www.medcalc.org/manual/roc-curves.php
  38. F. Conversano, A. Greco. E. Casciaro, S. Casciaro., A. Lay-Ekuakille, “A Novel DualFrequency Method for Selective Ultrasound Imaging of Targeted Nanoparticles”, IEEE Sensors Conference, Limerick, Ireland, 2011.10.1109/ICSENS.2011.6126993
  39. S. Casciaro, L. Massoptier, F. Conversano, A. Lay-Ekuakille, E. Casciaro, R. Franchini, R. Verrienti, A. Malvasi, “Fully Automatic Segmentations of Liver and Hepatic Tumors from 3-D Computed Tomography Abdominal Images: a new adaptive initialization method”, IEEE Sensors Journal Special Issue on Sensors for Non-Invasive Physiological Monitoring, Vol.12, N. 3, pp. 464-473, 2011.10.1109/JSEN.2011.2108281
  40. V. Bhateja, A. Kalsi, A. Shrivastava and A. Lay-Ekuakille, “A Reduced Reference Distortion Measure for Performance Improvement of Smart Cameras,” IEEE Sensors Journal, Special Issue on “Advancing Standards for Smart Transducer Interfaces”,Vol.15, n.5, pp. 2531 - 2540, 2015.
  41. A. Lay-Ekuakille, P.Vergallo, F. Conversano, S. Casciaro, D. Veneziano, “Thermal Image Processing for Accurate Realtime Decision Making in Surgery”, 2014 IEEE MeMea, June, 11-12, 2014, Lisbon, Portugal.10.1109/MeMeA.2014.6860151
Language: English
Page range: 1156 - 1176
Submitted on: Dec 14, 2016
Accepted on: Apr 1, 2016
Published on: Jun 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 A. Lay-Ekuakille, P. Vergallo, I. Jabłoński, S. Casciaro, F. Conversano, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.