Have a personal or library account? Click to login

A Pid Based Anfis & Fuzzy Control Of Inverted Pendulum On Inclined Plane (Ipip)

Open Access
|Jun 2016

References

  1. Xu C and Yu X, “Mathematical modeling of elastic inverted pendulum control system,” Journal of Control theory and applications, 2(3): 281-282, doi: 10.1007/s11768-004-0010-1. (2004).10.1007/s11768-004-0010-1
  2. Tripathi SK, Panday H, Gaur P, “Robust control of Inverted Pendulum using fuzzy logic controller,” In Proc. of IEEE Students Conference on Engineering and Systems (SCES), 12-14 April, 2013, Allahabad, pp 1-6, doi: 10.1109/SCES.2013.6547577.(2013).
  3. Lozano R and Fantoni I, “Passivity based control of the Inverted Pendulum,” In a Book title Perspectives in Control, pp. 83-95, doi: 10.1007/978-1-4471-1276-1_7. (1998)10.1007/978-1-4471-1276-1_7
  4. Astrom KJ and McAvoy TJ, “Intelligent control,” Journal of Process control, 2(3):115-127, doi: 10.1016/0959-1524(92)85001-D. (1992).10.1016/0959-1524(92)85001-D
  5. Liu TI, Ko EJ and Lee J, “Intelligent control of Dynamic systems,” Journal of the Franklin Institute, 330(3): 491-503. doi: 10.1006/0016-0032(93)90095-C. (1993).
  6. P. Vadakkepat and D. Goswami, “Biped Locomotion: Stability, Analysis and Control”, International Journal on Smart sensing and intelligent systems, Vol.1, No.11, pp. 187-207, 2008.10.21307/ijssis-2017-286
  7. Jang JSR, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man and Cybernetics, 23(3): 665-685, 1993.10.1109/21.256541
  8. Tao CW, Taur JS, Wang CM and Chen US, “Fuzzy hierarchical swing-up and sliding position controller for the inverted pendulum-cart system,” Elsevier Journal: Fuzzy Sets and Systems, 159, 2763-2784, 2008.10.1016/j.fss.2008.02.005
  9. Becerikli Y, Konar AF and Samad T, “Intelligent optimal control with dynamic neural networks,” Elsevier Journals of Neural networks, 16, 251-259, 2003.10.1016/S0893-6080(02)00232-0
  10. Man KF, Tang KS and Kwong S, “Genetic Algorithms: Concepts and Applications,” IEEE Transactions on Industrial Electronics, 43(5): 519-534, 1996.10.1109/41.538609
  11. Abido MA, “Optimal design of Power-system stabilisers using Particle swarm optimisation,” IEEE Transactions on Energy Conversion, 17(3): 406-413 (2002).10.1109/TEC.2002.801992
  12. Fisher J and Bhattacharya R, “Linear quadratic regulation of systems with stochastic parameter uncertainties,” Elsevier Journal of Applied Soft Computing, 45: 2831-2841, 2009.10.1016/j.automatica.2009.10.001
  13. Johnson MA and Moradi MH, PID Controllers: New identification and Design methods, Springer, 2005.10.1007/1-84628-148-2
  14. Yusuf LA and Magaji N, “GA-PID controller for position control of inverted pendulum,” In Proc. of IEEE 6th International Conference on Adaptive Science & Technology, 29-31 Oct. 2014, Ota, pp. 1-5, doi: 10.1109/ICASTECH.2014.7068099.10.1109/ICASTECH.2014.7068099
  15. W. Benrejeb and O. Boubaker, “FPGA modelling and real time embedded control design via Labview Software: Application for Swinging up a Pendulum”, International Journal on smart sensing and intelligent systems, Vol.5, No. 3, pp. 576-591, 2012.10.21307/ijssis-2017-496
  16. Dastranj MR, Moghaddas M, Afghu SS and Rouhani M, “PID control of inverted pendulum using particle swarm optimization (PSO) algorithm,” In Proc. of 3rd IEEE International Conference on Communication software and networks (ICCSN), 27-29 May 2011, Xian, pp. 575-578, doi: 10.1109/ICCSN.2011.6013972.10.1109/ICCSN.2011.6013972
  17. Omatu S, Fujinaka T and Yoshioka M, “Neuro-PID control of inverted single and double pendulums,” In Proc. of IEEE International Conference on Systems, Man and Cybernetics, 8-11 Oct. 2000, Nashrille, pp. 2685-2690, doi: 10.1109/ICSMC.2000.884401.10.1109/ICSMC.2000.884401
  18. Prasad LB, Tyagi B and Gupta HO, “Optimal control of nonlinear inverted pendulum system using PID controller and LQR: Performance analysis without and with disturbance unit,” International Journal of Automation and Computing, 11(6), 661-670, doi: 10.1007/s1163-014-0818-1.
  19. Dong Z, Song L and Chen H, “The modeling and simulation of first-order Inverted pendulum control system,” In Book title Advances in Electronic Commerce, Web application and Communication, 2, 221-225, doi: 10.1007/978-3-642-28658-2_34.10.1007/978-3-642-28658-2_34
  20. Wang X, Sun Z and Zai S, “Application of double-loop PID controller in the Inversed pendulum real-time control system,” In Book title Green Communications and Networks, pp. 619-626, doi: 10.1007/978-94-007-2169-2_73.10.1007/978-94-007-2169-2_73
  21. Wang JJ, “Simulation studies of inverted pendulum based on PID controllers,”Simulation Modelling Practice and Theory, 19, 440-449, doi: 10.1016/j.simpat.2010.08.003. 2010.10.1016/j.simpat.2010.08.003
  22. Chakraborty K, Mukherjee RR and Mukherjee S, “Tuning of PID controller of Inverted pendulum using genetic algorithm,” International Journal of Soft Computing and Engineering (IJSCE), 3(1): 21-24, 2013.
  23. Mousa ME, Ebhrahim MA and Hassan MAM, “Stabilising and Swinging-up the Inverted Pendulum using PI and PID controllers based on Reduced linear quadratic regulator tuned by PSO,” International Journal of System Dynamics Applications, 4(4): 52-69, 2015.10.4018/IJSDA.2015100104
  24. Mishra SK and Chandra D, “Stabilisation and tracking control of Inverted pendulum using fractional order PID controller,” Journal of Engineering, 2014, 1-9, doi: 10.1155/2014/752918.10.1155/2014/752918
  25. Jia X, Dai Y and Memon ZA, “Adaptive neuro-fuzzy inference system design of inverted pendulum system on an inclined rail,” In Proc. of 2nd WRI Global Congress on Intelligent systems, 16-17 Dec 2010, 137-141, doi: 10.1109/GCIS.2010.67.10.1109/GCIS.2010.67
  26. Almeshal AM, “Development and control of a novel-structure two-wheeled robotic vehicle maneuverable in different terrains,” A PhD Thesis submitted to Dept. of Automobile Control and System Engineering, University of Sheffield, UK (2013).
  27. [27]Furuta K, Kajiwara H, Kosuge K, “Digital control of a double inverted pendulum on an inclined rail,” International Journal of Control 32(5): 907-924. doi: 10.1080/00207178008922898, 1980.10.1080/00207178008922898
  28. Almeshal AM, Goher KM, Tokhi MO, Agouri SA, “A new configuration of a two-wheeled double inverted pendulum like robotic vehicle with movable payload on an inclined plane,” In Proc. of 1st IEEE International Conference on Innovative Engineering systems (ICIES), 7-9 Dec 2012, Alexandria, 97-102. doi: 10.1109/ICIES.2012.6530852.10.1109/ICIES.2012.6530852
  29. Nasarallah DS, Angeles J, Michalska, “Velocity and orientation control of an anti-tilting mobile robot moving on an inclined plane,” In Proc. of IEEE International Conference on Robotics and Automation (ICRA), May 2006, Orlando, Florida, pp 3717-3723. doi: 10.1109/ROBOT.2006.1642270.10.1109/ROBOT.2006.1642270
  30. Kausar Z, Stol K, Patel N The effect of terrain inclination on performance and the stability region of two-wheeled mobile robots. International Journal of Advanced Robotics systems, Vol. 9, pp 1-11. doi: 10.5772/52894. (2012)10.5772/52894
  31. Hanwate SD and Hote YV, “Design of PID controller for inverted pendulum using stability boundary locus,” In Proc. of IEEE Indian Conference (INDICON), 11-13 Dec. 2014, Pune, pp. 1-6, doi: 10.1109/INDICON.2014.7030563.10.1109/INDICON.2014.7030563
  32. Zadeh LH (1965) Fuzzy Sets, Information and Control 8(3): 338-353.10.1016/S0019-9958(65)90241-X
  33. Zadeh LA (1975) The concept of a Linguistic variable and its application to approximate reasoning-I. Information Sciences 8: 199-249.10.1016/0020-0255(75)90036-5
  34. Tzafestas SG, Venetsanopoulos AN, Terzakis S (1994) Fuzzy Sets and fuzzy reasoning : An Introduction. In Book title Fuzzy reasoning in Information, decision and control systems, pp 3-29, doi: 10.1007/978-0-585-34652-6_1.10.1007/978-0-585-34652-6_1
  35. Dalecky S, Zboril FV (2015) An approach to ANFIS Performance. A book title Mendel 2015 and series title Advances in Intelligent Systems and Computing, Vol. 378, pp. 195-206, doi: 10.1007/978-3 -319-19824-8_16.
  36. Livingstone DJ (2009) A book title Artificial Neural Networks Methods and Applications. doi: 10.1007/978-1-60327-101-1, ISBN (print): 978-1-58829-718-1, ISSN: 1064-3745.10.1007/978-1-60327-101-1
  37. Cherkassky V (1998) Fuzzy inference systems: A critical review. A book title Computational Intelligence: Soft computing and fuzzy neuro integration with applications and series title NATO ASI series, pp. 177-197. doi: 10.1007/978-3-642-58930-0_10.10.1007/978-3-642-58930-0_10
  38. Pfister M, Rojas R (1994) Hybrid learning algorithm for feedforward neural networks. A book title Fuzzy logik and series title Informatik aktuell, pp. 61-68. doi: 10.1007/978-3-642-79386-8_8.10.1007/978-3-642-79386-8_8
  39. Li J, Cheng JH, Shi JY, Fei-Juang (2012) Brief Introduction of Back Propagation(BP) neural networks algorithm and its improvement. A book title Advances in Computer Science and Information Engineering and series title Advances in Intelligent Soft computing, vol 169, pp. 553-558. doi: 10.1007/978-3-642-30223-7_87.10.1007/978-3-642-30223-7_87
  40. Welberg J (2006) A book title Data analysis using the method of least squares and subtitle Extracting the most information from experiments.
Language: English
Page range: 616 - 636
Submitted on: Dec 28, 2015
Accepted on: Mar 8, 2016
Published on: Jun 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2016 Ashwani Kharola, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.