Have a personal or library account? Click to login

Non Invasive Estimation Of Blood Urea Concentration Using Near Infrared Spectroscopy

Open Access
|Jun 2016

References

  1. H.M. Heise, in: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, vol. 1, John Wiley Press, New York, 2000, pp.1-27
  2. J.P. Wicksted, R.J. Erckens, M. Motamedi, W.F. “Raman Spectroscopy studies of metabolic concentrations in aqueous solutions and aqueous humor specimens March, Appl. Spectrosc. 49(7) (1995)987-99310.1366/0003702953964912
  3. S.J. Alcock, B. Danieslson, A.P.F. Turner, “Advances in the use of in vivo sensors”, Biosensors and Bioelectronics Volume 7, Issue 4, 1992, Pages 243-25410.1016/0956-5663(92)87003-8
  4. John Allen, “Photoplethysmography and its application in clinical physiological measurement” Published 20 February 2007 o 2007 IOP Publishing Ltd o Physiological Measurement Mar; 28(3):R1-39.10.1088/0967-3334/28/3/R01
  5. Wascotte V1, Rozet E, Salvaterra A, Hubert P, Jadoul M, Guy RH, Préat V “Non-invasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo”, Eur J Pharm Biopharm. 2008 Aug; 69(3):1077-82. doi: 10.1016/j.ejpb.2008.02.012. Epub 2008 Feb 2010.1016/j.ejpb.2008.02.012
  6. G. A. Martinez, “Measurement of Blood Urea Based in Optical Sensing by Employ in Hemodialysis Treatment,” Engineering in Medicine and Biology Society, 2006. EMBS ‘06. 28th Annual International Conference of the IEEE, New York, NY, 2006, pp. 2231-2234.10.1109/IEMBS.2006.260587
  7. Martinez, G.A.; Bragos, R., “No invasive Measurement of Urea in Blood Based in Optical Sensing for their Employment in the Hemodialysis Processes.,” in Instrumentation and Measurement Technology Conference, 2005. IMTC 2005. Proceedings of the IEEE, vol.2, no., pp.1397-1400, 16-19May 2005 doi: 10.1109/IMTC.2005.160437910.1109/IMTC.2005.1604379
  8. Gustavo Adolfo Martinez, “On-Line Measurement of Blood Urea Based in Optical Sensing by Employ in Hemodialysis Treatment”, World Congress on Medical Physics and Biomedical Engineering 2006 Volume 14 of the series IFMBE Proceedings pp 651-65510.1007/978-3-540-36841-0_151
  9. Smirthwaite PT, Fisher AC, Henderson IA et al. “Development of blood urea monitoring system for the closed loop control of dialysis”, ASAIO J. 1993;39; M:342-710.1097/00002480-199339030-00039
  10. Helmut J. Richter and Yvette S. Lapointe, “A Simple Method for the Determination of Blood Urea Nitrogen, with Special Reference to Automatic Colorimetric Analysis” Clinical ChemistryDecember 1959 vol. 5 no. 6 617-62010.1093/clinchem/5.6.617
  11. Sternby J. Urea Sensors-a world of possibilities. Adv Renal Replace Ther. 1999; 6: 265-7210.1016/S1073-4449(99)70022-1
  12. Jacobs P. Suls J, Sansen W, et al. “A disposable urea sensor for continuous monitoring hemodialysis efficiency”, ASAIO J. 1993; 39; M: 353-810.1097/00002480-199339030-00041
  13. Airat k. amerov, jun chen, and mark a. arnold,”Molar Absorptivities of Glucose and Other Biological Molecules in Aqueous Solutions over the First Overtone and Combination Regions of the Near-InfraredSpectrum”.APPLIEDSPECTROSCOPY Vol. 58, Issue 10, pp. 1195-1204 (2004)10.1366/0003702042336136
  14. Z. Piasek and T. Urbanski, “The infrared absorption spectrum and structure of urea,” Bulletin de l’Académie Polonaise des Sciences: Série des Sciences Chimiques, vol. 10, pp. 113–120, 1962.
  15. A. I. Pavlyuchko, E. V. Vasilyev, and L. A. Gribovb, “calculations of molecular ir spectra in the overtone and combination frequency regions”, November 2011, Volume 78, Issue 5, pp 639-645.10.1007/s10812-011-9511-0
  16. D. Riordan, P. Doody and J. Walsh, The use of artificial neural networks in the estimation of the perception of sound by the human auditory system, International journal on smart sensing and intelligent systems vol. 8, no. 3, pp 1806-1836, September 2015.10.21307/ijssis-2017-831
  17. C.PerezGandia, A.Facchinetti, G.sparacino, C.cobelli, E.J.Gomez, M.Rigla, A.deLeiva, M.E.Hernando,”Artificial neural network algorithm for on-line glucose prediction from continuous glucose monitoring”, Diabetes Technol.Ther. 2010, 12, 81-8810.1089/dia.2009.0076
  18. Robertson G, Lehman D, Sandham, Hamilton, “Blood Glucose Prediction Using Artificial Neural Networks Trained with the AIDA Diabetes Simulator: A Proof-of-Concept Pilot Study”, Journal of Electrical and Computer Engineering, 2011, Article ID 681786, 11 pages.10.1155/2011/681786
  19. Bhandare, P., Mendelson, Y., Peura, R.A.: Multivariate Determination of Glucose in Whole Blood Using Partial Least-Squares and Artificial Neural Networks Based on Mid-Infrared Spectroscopy. J. Applied Spectroscopy 47, 1214–1221 (1993).10.1366/0003702934067928
  20. Smits, J.R.M., Malssen, W.J., Buydens, L.M.C., KatemanG. Using Artificial Neural Networks for Solving Chemical Problems. Part 1. Multi-layer Feed-forward Networks. J.Chemometrics and Intelligent Laboratory Systems 22, 165–189 (1994)10.1016/0169-7439(93)E0035-3
Language: English
Page range: 449 - 467
Submitted on: Dec 15, 2015
Accepted on: Mar 12, 2016
Published on: Jun 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Swathi Ramasahayam, Shubhajit Roy Chowdhury, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.