Have a personal or library account? Click to login

Vibration Based Health Monitoring Of Honeycomb Core Sandwich Panels Using Support Vector Machine

Open Access
|Mar 2016

References

  1. H.Meifeng and H.Wenbin, “A study on composite honeycomb sandwich panel”, Materials and design, Vol. 29, 2008, pp. 709-713.10.1016/j.matdes.2007.03.003
  2. Y.K.Hyeung and H.Woonbong, “Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams”, Composite structures, Vol.55, 2002, pp. 5162.10.1016/S0263-8223(01)00136-2
  3. M.K.Lim, S.C.Low, L.Jiang and K.M.Liew, “Dynamic characteristics of disbands in honeycomb structures”, Engineering structures, Vol. 17, 1995, pp. 27–38.10.1016/0141-0296(95)91038-3
  4. K.B.Su, “Delamination resistance of stitched thermoplastic matrix composite laminates”, Advances in thermoplastic matrix composite materials, Vol. 1044, 1989, pp. 279-300.
  5. D.Montalvao, A.M.R.Ribeeiro, J.Duarte-Silva, “A method for the localization of damage in CFRP plate using damping”, Mechanical systems and signal processing, Vol. 23, 2009, pp. 18461854.10.1016/j.ymssp.2008.08.011
  6. B.Sauvik,M.Debdatta and M.S.Shaik, “ wavlet-based active sensing for health monitoring of plate structures using baseline free ultrasonic guided wave signals”, International journal on smart sensing and intelligent systems, vol. 6, no. 4, 2013, pp. 1435-1455.10.21307/ijssis-2017-598
  7. S.Deshan, F.U.Chunyu, LI. Qiao LI, “Experimental investigation of damage identification for continuous railway bridges”, Journal of Modern Transportation, Vol. 20, No.1, 2012, pp. 1-9.10.1007/BF03325770
  8. B.Darun,M.Marcias,R.Bruno and Y.Marko, “ A Hybrid Structural Health Monitoring System for the Detection and Localization of Damage in Composite Structures”, Journal of Sensors, 2014, vol. 2014, doi:10.1155/2014/109403.10.1155/2014/109403
  9. H.Jiaze and Y. Fuh-Gwo, “Damage identification for composite structures using a crosscorrelation reverse-time migration technique”, Structural Health Monitoring, 2015, vol. 14 No. 6, pp. 558-570.10.1177/1475921715602546
  10. T.H.Loutas, A.O.Panop, D.Rouliasand V.Kostopoulos, “Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements”, Expert systems with application, Vol. 39, 2012, pp. 8412-8422.10.1016/j.eswa.2012.01.179
  11. S.K.Kumar, T.Jayabarathiand S.Naveen, “Fault identification and location in distribution systems using support vector machines”, European Journal of Scientific Research, Vol. 51, 2011, pp. 53-60.
  12. B. Ahmet, S. K.Ambuj, S.Peter, F.Tony, J.Hector, Y.Linjun and E.Ahmed, “Real-time nondestructive structural health monitoring using support vector machines and wavelets”, Proc. SPIE 5770, Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring, 2005, doi:10.1117/12.597685.10.1117/12.597685
  13. K. Jaroslaw and S.Osowski, “Support vector machine for fault diagnosis of the broken rotor bars of squirrel-cage induction motor”, Neural Computation & Application, Vol. 19, 2010, 557564.10.1007/s00521-009-0316-5
  14. S. Satish, G.Anirban and B.Sauvik, “Damage identification in aluminium beams using support vector machine: Numerical and Experimental studies”, Struct. Control Health Monit., 2015, doi:10.1002/stc.1773.10.1002/stc.1773
  15. A.J.Smola and B.Scholkopf, “A tutorial on support vector regression”, Statistics and Computing, Vol. 14, 2004, No. 3, pp 199-222.10.1023/B:STCO.0000035301.49549.88
  16. S.R. Gunn, “Support Vector Machines for Classification and Regression,” technical report, School of Electronics and Computer Science, Univ. of Southampton, Southampton, U.K., 1998.
Language: English
Page range: 215 - 232
Submitted on: Dec 2, 2016
Accepted on: Jan 16, 2016
Published on: Mar 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2016 Saurabh Gupta, Satish B Satpal, Sauvik Banerjee, Anirban Guha, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.