Have a personal or library account? Click to login
Adaptive Intelligent Inverse Control Of Nonlinear Systems With Regard To Sensor Noise And Parameter Uncertainty (Magnetic Ball Levitation System Case Study)
Zuqiang Long, Yan Yuan, Yuebing Xu, Shehui Du, “High-accuracy positioning of lathe servo system using fuzzy controllers based on variable universe of discourse”, International Journal on Smart Sensing and Intelligent Systems, Vol. 7, No. 3, pp. 1114-1133, 2014.
Zhonghu Yuan, Wenwu Hua and Xiaowei Han, “Zigbee transmission power dynamic adjustment system based on fuzzy control”, International Journal on Smart Sensing and Intelligent Systems, Vol. 7, No. 4, pp. 1736-1752, 2014.
Xing Haihua, Yu Xianchuan, Hu Dan1 and Dai Sha, “Sensitivity analysis of hierarchical hybrid fuzzy neural network”, International Journal on Smart Sensing and Intelligent Systems, Vol. 8, No. 3, pp. 1837-1854, 2015.
L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”, Parts 1, 2, and 3. Information Sciences 8, 9, 199–249, 301-357, pp. 43-80, 1975.10.1016/0020-0255(75)90036-5
E. Hosseinzadeh, H. Hassanpour, M. Arefi, “A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs”, Soft Computing, Vol. 19, No. 5, pp. 1143-1151, 2015.
S.O. Olatunji, A. Selamat, A.R.A. Azeez, “Modeling permeability and PVT properties of oil and gas reservoir using hybrid model based on type-2 fuzzy logic systems”, Neurocomputing, Vol. 157, pp. 125–142, 2015.10.1016/j.neucom.2015.01.027
A.C. Aras, O. Kaynak, “Interval Type-2 Fuzzy Neural System Based Control with Recursive Fuzzy C-Means Clustering”, International Journal of Fuzzy Systems, Vol. 16, No. 3, pp. 317-326, 2014
J. Tavoosi, A. Shamsi Jokandan and M.A. Daneshwar, “A new method for position control of a 2-DOF robot arm using neuro–fuzzy controller”, Indian Journal of Science and Technology, Vol. 5, No.3, 2012.10.17485/ijst/2012/v5i3.10
J. Tavoosi, M. Alaei, B. Jahani, M.A. Daneshwar, “A novel intelligent control system design for water bath temperature control”, Australian Journal of Basic and Applied Sciences, Vol. 5, No. 12, pp. 1879-1885, 2011.
J. Tavoosi, M.A. Badamchizadeh, “A class of type-2 fuzzy neural networks for nonlinear dynamical system identification”, Neural Computing & Application, Vol. 23, No. 3, 2013.10.1007/s00521-012-0981-7
J.R. Castro, O. Castillo, P. Melin, A. Rodríguez-Díaz, “A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks”, journal of Information Sciences, Vol. 179, pp. 2175-2193, 2009.
R.H. Abiyev, O. Kaynak, T. Alshanableh, F. Mamedov, “A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization”, Applied Soft Computing, Vol. 11, pp. 1396–1406, 2011.
R. Martínez, O. Castillo, L.T. Aguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms”, Information Sciences, Vol. 179, pp. 2158–2174, 2009.
D. Bhattacharya, A. Konar, P. Das, “Secondary factor induced stock index time-series prediction using Self-Adaptive Interval Type-2 Fuzzy Sets”, Neurocomputing, Vol. 171, pp. 551–568, 1 January 2016.10.1016/j.neucom.2015.06.073
F.J. Lin, P.H. Shieh, Y.C. Hung, “An intelligent control for linear ultrasonic motor using interval type-2 fuzzy neural network”, IET Electric Power Applications, Vol. 2, No. 1,pp. 32– 41, 2008.10.1049/iet-epa:20070060
A. Mohammadzadeh, S. Ghaemi, “Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks”, ISA Transactions, Vol. 58, pp. 318–329, September 2015.10.1016/j.isatra.2015.03.01625933686
T.C. Lin, “Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems”, Commun Nonlinear Sci Numer Simulat, Vol. 15, pp. 4084-4099, 2010.
H.A. Hagras,”A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots”, IEEE Trans. on Fuzzy Systems, Vol. 12, No. 4, pp. 524–539, 2004.10.1109/TFUZZ.2004.832538
J.L. Clavo-Rolle, O. Fontelna-Romero, B. Perez-Sanchez, B. Guijarro-Berdinas, “Adaptive inverse control using an online learning algorithm for neural networks”, INFORMATICA, Vol. 25, No. 3, pp. 401–414, 2014.10.15388/Informatica.2014.20
H.H. Kadhim, “Self-learning of ANFIS inverse control using iterative learning technique”, International Journal of Computer Applications, Vol. 21, No. 8, pp. 24-29, 2011.10.5120/2532-3450
C.F. Juang, J.S. Chen, “Water bath temperature control by a recurrent fuzzy controller and Its FPGA implementation”, IEEE Trans. Industrial Electronics, Vol. 53, No. 3, pp. 941949, 2006.
Y. Satoh, H. Nakamura, H. Katayama, H. Nishitani, “Adaptive inverse optimal control of a magnetic levitation system”, Adaptive Control, pp.307-322, 2009.10.5772/6512
J. J. Raygoza-Panduro, S. Ortega-Cisneros, J. Rivera, A. de la Mora, “Design of a mathematical unit in FPGA for the implementation of the control of a magnetic levitation system”, International Journal of Reconfigurable Computing, pp. 1-9, 2008.10.1155/2008/634306
A. Kumar, M. Kumar Panda, V. Kumar, “Design and implementation of interval type-2 single input fuzzy logic controller for magnetic levitation system” Proceedings of ICAdC, AISC 174, pp. 833–840, 2013.10.1007/978-81-322-0740-5_99
T. T. Salim, V.M. Karsli, “Control of single axis magnetic levitation system using fuzzy logic control”, International Journal of Advanced Computer Science and Applications, Vol. 4, No. 11, 2013.10.14569/IJACSA.2013.041111
A. C. Unni, A. Junghare, “Fuzzy logic controller and LQR for magnetic levitation system”, International Journal of Recent Technology and Engineering (IJRTE),Vol. 3, No.1, 2014.
K. Niveedha, P. Hari Prasath, P.N. Shivakumaran, B. Karthikeyan, “Performance assessment and design of an intelligent fuzzy logic controller for magnetic ball levitation system”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, No. 8, 2013.
H.A. Elreesh, B. Hamed, “FPGA fuzzy controller design for magnetic ball levitation”, I.J. Intelligent Systems and Applications, Vol. 10, pp. 72-81, 2012.10.5815/ijisa.2012.10.08
S. Liu, C.Y. Su, Z. Li, “Robust adaptive inverse control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresis model”, IEEE Trans. on Automatic Control, Vol. 59, No. 8, 2014.10.1109/TAC.2014.2298732
H. Moodi, M. Farrokhi, “Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent”, International Journal of Applied Mathematics and Computer Science, Vol. 23, No. 4, 2013.10.2478/amcs-2013-0053
R. Abiyev, F. Mamedov, T. Al-shanableh, “Nonlinear Neuro-fuzzy Network for Channel Equalization”, Analysis and Design of Intelligent Systems using Soft Computing Techniques, pp. 327-336, 2007.10.1007/978-3-540-72432-2_33
T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu, I. B. Turksen, “Industrial applications of type-2 fuzzy sets and systems: A concise review”, Computers in Industry, Vol. 62, pp.125–137, 2011.10.1016/j.compind.2010.10.006
W.H. Roger Jeng, C.Y. Yeh, S.J. Lee, “General type-2 fuzzy neural network with hybrid learning for function approximation”, IEEE International Conference on Fuzzy Systems, Korea, 2009.
M. Singh, S. Srivastava, M. Hanmandlu, J.R.P. Gupta, “Type-2 fuzzy wavelet networks (T2FWN) for system identification using fuzzy differential and Lyapunov stability algorithm”, Applied Soft Computing, Vol. 9, pp. 977–989, 2009.10.1016/j.asoc.2008.03.017
Y. Chu, K. Glover, “Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities”, IEEE Trans. Automatic Control. Vol.44,No. 2, pp.471483, 1999.
E. D. Sontag “Recurrent neural networks: Some systems-theoretic aspects” in Dealing with Complexity: A Neural Network Approach, M. Karny, K. Warwick, and V. Kurkova, Eds. London, U.K.: Springer-Verlag, 1997.
N. Barabanov, D. Prokhorov, “Stability analysis of discrete time recurrent neural networks,” IEEE Trans. Neural Networks, Vol. 13, pp.292–303, 2002.10.1109/72.99141618244432
Q. Han, A. Xue, S. Liu, and X. Yu, “Robust absolute stability criteria for uncertain Lur’e systems of neutral type,” International Journal of Robust and Nonlinear Control, Vol. 18, pp. 278-295, 2008.10.1002/rnc.1219
V. M. Becerra, F. R. Garces, S. J. Nasuto and W. Holderbaum, “An efficient parameterization of dynamic neural networks for nonlinear system identification,” IEEE Trans. Neural Networks, Vol. 16, No. 4, pp. 983-988, 2005.10.1109/TNN.2005.84984416121739
J. Li, Y. Jinshou, “Nonlinear Hybrid Adaptive Inverse Control Using Neural Fuzzy System and Its Application To CSTR Systems”, Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R.China, 2002.