Have a personal or library account? Click to login

Computer Vision-Based Color Image Segmentation with Improved Kernel Clustering

Open Access
|Sep 2015

References

  1. M. Celenk, “A color clustering technique for image segmentation”, Computer Vision, Graphics, and Image Processing, Vol. 52, No. 2, 1990, pp. 145-170.10.1016/0734-189X(90)90052-W
  2. A. Tremeau, N. Borel, “A region growing and merging algorithm to color segmentation”, Pattern Recognition, Vol. 30, No. 7, 1997, pp. 1191-1203.10.1016/S0031-3203(96)00147-1
  3. H. D. Cheng, Y. Sun, “A hierarchical approach to color image segmentation using homogeneity”, IEEE Trans. on Image Processing, Vol. 9, No. 12, 2000, pp. 2071-2082.10.1109/83.887975
  4. O. Lezoray, H. Cardot, “Cooperation of color pixel classification schemes and color watershed: a study for microscopic images”, IEEE Transactions on Image Processing, Vol. 11, No. 7, 2002, pp. 783-789.10.1109/TIP.2002.800889
  5. L. Shafarenko, M. Petrou, J. Kittler, “Automatic watershed segmentation of randomly textured color images”, IEEE Trans. on Image Processing, Vol. 6, No. 11, 1997, pp. 1530-1544.10.1109/83.641413
  6. A. Shiji, N. Hamada, “Color image segmentation method using watershed algorithm and contour information”, International Conference on Image Processing, 1999, pp. 305-309.
  7. L. H. Ma, Y. Zhang, J. P. Deng, “A target segmentation algorithm based on opening-closing binary marker on watersheds and texture merging”, Journal of Image and Graphics, Vol. 8, 2003, No 1, pp. 77-83.
  8. G. Celeux, F. Forbes, N. Peyrard, “EM procedures using mean field-like approximations for Markov model-based image segmentation”, Pattern Recognition, Vol. 36, No. 1, 2003, pp.131144.10.1016/S0031-3203(02)00027-4
  9. Y. Zhang, M. Brady, S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm”, IEEE Transactions on Medical Imaging, Vol. 20, No. 1, 2001, pp. 45-57.10.1109/42.906424
  10. C. L. Huang, T. Y. Cheng, C. C. Chen, “Color images segmentation using scale space filter and Markov random field”, Pattern Recognition, Vol. 25, No. 10, 1992, pp. 1217-1229.10.1016/0031-3203(92)90023-C
  11. G. D. Guo, S. Yu, S. D. Ma, “Unsupervised segmentation of color images”, Proc. ICIP, 1998, pp. 299.
  12. F. Kurugollu, B. Sankur, “Color image segmentation using histogram multi-thresholding and fusion”, Image and Vision Computing, Vol. 19, No. 13, 2001, pp. 915-928.10.1016/S0262-8856(01)00052-X
  13. C. Q. Liu, H. Cheng, “An efficient clustering method for color image segmentation”, Pattern Recognition and Artificial Intelligence, Vol. 8, No. A01, 1995, pp. 133-138.
  14. D. Carevic, T. Caelli, “Region-Based Coding of Color Images Using Karhunen-Loeve Transform”, Computer Vision, Graphics, and Image Processing, Vol. 59, No. 1, 1997, pp. 27-38.10.1006/gmip.1996.0402
  15. X. W. Wang, L. S. Shen, B. G. Wei, “The focus segmentation of color ophthalmologic image based on modified K-means clustering and mathematical morphology”, Chinese Journal of Biomedical Engineering, Vol. 5, 2002.
  16. N. Zahid, M. Limouri, A. Esseaid, “A new cluster-validity for fuzzy clustering”, Pattern Recognition, Vol. 32, No. 7, 1999, pp. 1089-1097.10.1016/S0031-3203(98)00157-5
  17. K. Y. Lin, L. H. Xu, J. H. Wu, “A fast fuzzy C-means clustering for color image segmentation” , Journal of Image and Graphics, Vol. 9, No. 2, 2004.
  18. T. Q. Chen, Y. Lu, “Color image segmentation-An innovative approach”, Pattern Recognition, Vol. 35, No. 2, 2002, pp. 395-405.10.1016/S0031-3203(01)00050-4
  19. M. Sammouda, R. Sammouda, N. Niki, “Segmentation and analysis of liver cancer pathological color image based on artificial neural networks”, ICIP’99, Vol. 3, 1999, pp. 392-396.
  20. M. Sammouda, R. Sammouda, “Improving the performance of Hopfield neural network to segment pathological liver color images”, Proceedings of the 17th International Congress and Exhibition, London, June 25-28, 2003.10.1016/S0531-5131(03)00394-7
  21. S. H. Ong, N. C. Yeo, K. H. Lee, “Segmentation of color images using a two-stage selforganizing network”, Image and Vision Computing, Vol. 4, 2002.10.1016/S0262-8856(02)00021-5
  22. N. Papamarkos, C. Strouthopoulous, and L. Andreadis, “Multithresholding of color and gray-level images through a neural network technique”, Image and Vision Computing, Vol. 18, No. 3, 2000, pp. 213-222.10.1016/S0262-8856(99)00015-3
  23. N. K. Suryadevara and S. C. Mukhopadhyay, “Wireless Sensor Network Based Home Monitoring System for Wellness Determination of Elderly”, IEEE Sensors Journal, Vol. 12, No. 6, June 2012, pp. 1965-1972.10.1109/JSEN.2011.2182341
  24. N. K. Suryadevara and S. C. Mukhopadhyay, “Determining Wellness Through An Ambient Assisted Living Environment”, IEEE Intelligent Systems, May/June 2014, pp. 30-37.10.1109/MIS.2014.16
  25. Rui Xu and D. Wunsch, “Survey of Clustering Algorithms”, IEEE Transaction on Neural Networks, Vol. 16, No. 3, 2005, pp. 645-678.10.1109/TNN.2005.84514115940994
  26. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Second Edition, Morgan Kaufmann, San Francisco, 2006.
  27. M. Filippone, F. Camastra, and F. Masulli, “A Survey of Kernel and Spectral Methods for Clustering”, Pattern Recognition, Vol. 41, No. 1, 2008, pp. 176-190.10.1016/j.patcog.2007.05.018
  28. C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998, pp. 121-167.10.1023/A:1009715923555
  29. D. M. J. Tax, R. P. W. Duin, “Support Vector Domain Description”, Pattern Recognition Letters, Vol. 20, No. 11-13, 1999, pp. 1191-1199.10.1016/S0167-8655(99)00087-2
  30. A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, “Support Vector Clustering”, Journal of Machine Learning Research, Vol. 2, No. 12, 2001, pp. 125-137.
  31. B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt, “Support Vector Method for Novelty Detection”, Advances in Neural Information Processing System, Vol. 12, 2000, pp. 582-588.
  32. N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang, R. K. Rayudu, “Forecasting the behavior of an elderly using wireless sensors data in a smart home”, Engineering Applications of Artificial Intelligence, Vol. 26, No. 10, 2013, pp. 2641-2652.10.1016/j.engappai.2013.08.004
  33. G. Sen Gupta, S. C. Mukhopadhyay and M. Finnie, “Wi-Fi Based Control of a Robotic Arm with Remote Vision”, Proceedings of 2009 IEEE I2MTC Conference, Singapore, May 5-7, 2009, pp. 557-562.10.1109/IMTC.2009.5168512
  34. Yongqing Wang, “NEW INTELLIGENT CLASSIFICATION METHOD BASED ON IMPROVED MEB ALGORITHM”, International Journal on Smart Sensing and Intelligent Systems, Vol. 7, No. 1, 2014, pp. 72-95.10.21307/ijssis-2017-646
  35. Yongqing Wang, “FACE RECOGNITION BASED ON IMPROVED SUPPORT VECTOR CLUSTERING”, International Journal on Smart Sensing and Intelligent Systems, Vol. 7, No. 4, 2014, pp. 1807-1829.10.21307/ijssis-2017-734
  36. Yongqing Wang, “Simpler Minimum Enclosing Ball: Fast Approximate MEB Algorithm for Extentive Kernel Methods”, CCDC’08, 2008, pp. 3492-3497.10.1109/CCDC.2008.4597996
Language: English
Page range: 1706 - 1729
Submitted on: May 6, 2015
Accepted on: Jul 31, 2015
Published on: Sep 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Yongqing Wang, and Chunxiang Wang, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.