B. F. Spencer, M. E. Ruiz-Sandoval and N. Kurata, “Smart sensing technology: opportunities and challenges”, Structural Control and Health Monitoring, vol. 11, no. 4, pp. 349-368, October 2004.10.1002/stc.48
O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors”, IEEE Communications Surveys &Tutorials, vol. 15, no. 3, pp. 1192–1209, July 2013.
C. Torres-Huitzil and A. Alvarez-Landero, “Accelerometer-based human activity recognition in smartphones for healthcare services”, Mobile Health, Springer Series in Bio-/Neuroinformatics, vol. 5, pp. 147-169, 2015.10.1007/978-3-319-12817-7_7
C. Calenge, “Analysis of animal movements in R: the AdehabitatLT package”, Office National de la Chasse et de la Faune Sauvage, April 2011, [Online] Available: http://cran.r- project.org/web/packages/adehabitatLT/vignettes/adehabitatLT.pdf
A. Chan-Hon-Tong, C. Achard and L. Lucat, “Simultaneous segmentation and classification of human actions in video streams using deeply optimized Hough transform”, Pattern Recognition, vol. 47, no. 12, pp. 3807–3818, December 2014.
Q. F. Shi, L. Wang, L. Cheng and A. Smola, “Human action segmentation and recognition using discriminative semi-Markov model”, International Journal of Computer Vision, vol. 93, no. 1, pp. 22–32, May 2011.10.1007/s11263-010-0384-0
Y. M. Liang, S. W. Shih and A. C. C. Shih, “Human action segmentation and classification based on the Isomap algorithm”, Multimedia Tools and Applications, vol. 62, no. 3, pp. 561–580, February 2013.10.1007/s11042-011-0858-2
Z. H. Xu, R. Zhang, R. Kotagiri and U. Parampalli, “An adaptive algorithm for online time series segmentation with error bound guarantee”, Proceedings of the 15th International Conference on Extending Database Technology (EDBT), Berlin, Germany, pp. 192–203, March 26–30, 2012.
S. C. Mukhopadhyay, “Wearable Sensors for Human Activity Monitoring: A Review”, IEEE Sensors Journal, vol. 15, No. 3, March 2015, pp. 1321-1330.10.1109/JSEN.2014.2370945
E. J. Keogh, S. Chu, D. Hart and M. J. Pazzani, “An online algorithm for segmenting time series”, Proceedings of IEEE International Conference on Data Mining (ICDM2001), San Jose, CA, USA, pp. 289–296, November 29–December 2, 2001.
V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen and J. Allan, “Mining of concurrent text and time series”, Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining Workshop (SIGKDD) on Text Mining, pp. 37–44, 2000.
A. S. Evani, B. Sreenivasan, J. S. Sudesh, M. Prakash and J. Bapat, “Activity recognition using wearable sensors for healthcare”, the 7th International Conference on Sensor Technologies and Applications (SENSORCOMM 2013), pp. 173–177, August 2013.
Y. J. Liang, X. S. Zhou, Z. W. Yu and B. Guo, “Energy-efficient motion related activity recognition on mobile devices for pervasive healthcare”, Mobile Network Application, vol.19, no. 3, pp. 303-317, June 2014.10.1007/s11036-013-0448-9
N. K. Suryadevara and S. C. Mukhopadhyay, “Wireless Sensor Network Based Home Monitoring System for Wellness Determination of Elderly”, IEEE Sensors Journal, vol. 12, No. 6, June 2012, pp. 1965-1972.10.1109/JSEN.2011.2182341
N. K. Suryadevara and S. C. Mukhopadhyay, “ADLs recognition of an elderly person and wellness determination”, Smart Homes: Design, Implementation and Issues, Springer International Publishing, pp. 111-137, 2015.10.1007/978-3-319-13557-1_4
N. K. Suryadevara and S. C. Mukhopadhyay, “Determining Wellness Through An Ambient Assisted Living Environment”, IEEE Intelligent Systems, May/June 2014, pp. 30-37.10.1109/MIS.2014.16
A. Kehagias, “A hidden Markov model segmentation procedure for hydrological and environmental time series”, Stochastic Environmental Researchand Risk Assessment, vol. 18, no. 2, pp. 117–130, April 2004.10.1007/s00477-003-0145-5
S. M.Anisheh and H. Hassanpour, “Designing an adaptive approach for segmenting non- stationary signals”, International Journal of Electronics, vol. 98, no. 8, pp. 1091-1102, August 2011.
M. Sinn, K. Keller and B. Chen, “Segmentation and classification of time series using ordinal pattern distributions”, The European Physical Journal Special Topics, vol. 222, no. 2, pp. 587-598, June 2013.10.1140/epjst/e2013-01861-8
Y. W. Si and J. L. Yin, “OBST-based segmentation approach to financial time series”, Engineering Applications of Artificial Intelligence, vol. 26, no. 10, pp. 2581-2596, November 2013.
N. Ravi, N. Dandekar, P. Mysore and M. L. Littman, “Activity recognition from accelerometer data”, Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence (IAAI), vol. 3, pp. 1541–1546, July 2005.
D. J. Xu, B. Yin and W. Wang, “A two-stage autocorrelation method for frequency estimation of sinusoidal signal”, International Journal of Electronics, vol. 101, no. 2, pp. 194-203, January 2014.10.1080/00207217.2013.775635
C. J. Chu, “Time series segmentation: a sliding window approach”, Information Sciences, vol. 85, no. 1–3, pp. 147–173, July 1995.10.1016/0020-0255(95)00021-G
R. K. Sharma and J. W. Wallace, “Improved spectrum sensing by utilizing signal autocorrelation”, the 69th IEEE Vehicular Technology Conference (VTC) Spring, Barcelona, Spain, pp. 1–5, April 26–29, 2009.10.1109/VETECS.2009.5073595