Have a personal or library account? Click to login

Automatic Recognition of Facial Expression Based on Computer Vision

By:
Open Access
|Sep 2015

Abstract

Automatic facial expression recognition from video sequence is an essential research area in the field of computer vision. In this paper, a novel method for recognition facial expressions is proposed, which includes two stages of facial expression feature extraction and facial expression recognition. Firstly, in order to exact robust facial expression features, we use Active Appearance Model (AAM) to extract the global texture feature and optical flow technique to characterize facial expression which is determined facial velocity information. Then, these two features are integrated and converted to visual words using “bag-of-words” models, and facial expression is represented by a number of visual words. Secondly, the Latent Dirichlet Allocation (LDA) model are utilized to classify different facial expressions such as “anger”, “disgust”, “fear”, “happiness”, “neutral”, “sadness”, and “surprise”. The experimental results show that our proposed method not only performs stably and robustly and improves the recognition rate efficiently, but also needs the least dimension when achieves the highest recognition rate , which demonstrates that our proposed method is superior to others.

Language: English
Page range: 1464 - 1483
Submitted on: Apr 15, 2015
Accepted on: Aug 1, 2015
Published on: Sep 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Shaoping Zhu, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.