Have a personal or library account? Click to login

A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation

Open Access
|Jun 2015

References

  1. J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image understanding: Multiclass object recognition and segmentation by jointly modeling texture, layout, and context,”Int. J. Comput. Vision, vol. 81, no. 1, pp. 2–23, Jan. 2009.10.1007/s11263-007-0109-1
  2. L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Associative hierarchical crfs for object class image segmentation,” in Computer Vision, 2009 IEEE 12th International Conference on, Sept 2009, pp. 739–746.10.1109/ICCV.2009.5459248
  3. P. KrähenbÜhl and V. Koltun, “Efficient inference in fully connected crfs with gaussian edge potentials,” in Advances in Neural Information Processing Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds. Curran Associates, Inc., 2011, pp. 109–117.
  4. X. Boix, J. M. Gonfaus, J. van de Weijer, A. D. Bagdanov, J. S. Gual, and J. Gonzalez, “Harmony potentials - fusing global and local scale for semantic image segmentation.”International Journal of Computer Vision, vol. 96, no. 1, pp. 83–102, 2012.10.1007/s11263-011-0449-8
  5. J. Alvarez, M. Salzmann, and N. Barnes, “Large-scale semantic co-labeling of image sets,” in Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on, March 2014, pp. 501–508.10.1109/WACV.2014.6836060
  6. J. Z. Ning Zhang, “A study of x-ray machine image local semantic features extraction model based on bag-ofwords for airport security,”Internatioanal Journal on Smart Sensing and Intelligent Systems, vol. 8, no. 1, p. 45, 2015.10.21307/ijssis-2017-748
  7. Aprinaldi, I. Habibie, R. Rahmatullah, A. Kurniawan, A. Bowolaksono, W. Jatmiko, and B. Wi- weko, “Arcpso: Ellipse detection method using particle swarm optimization and arc combination,” in Advanced Computer Science and Information Systems (ICACSIS), ser. ICACSIS 2014. IEEE, 2014, pp. 408– 413.10.1109/ICACSIS.2014.7065877
  8. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,”http://www.pascal- network.org/challenges/VOC/voc2012/workshop/index.html.
  9. L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Inference methods for crfs with co-occurrence statistics,”International Journal of Computer Vision, vol. 103, no. 2, pp. 213–225, 2013.10.1007/s11263-012-0583-y
  10. A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie, “Objects in context,” in Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, Oct 2007, pp. 1–8.10.1109/ICCV.2007.4408986
  11. S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into geometric and semantically consistent regions,” in Computer Vision, 2009 IEEE 12th International Conference on, Sept 2009, pp. 1–8.10.1109/ICCV.2009.5459211
  12. A. Gupta, A. A. Efros, and M. Hebert, “Blocks world revisited: Image understanding using qualitative geometry and mechanics,” in European Conference on Computer Vision(ECCV), 2010.10.1007/978-3-642-15561-1_35
  13. A. Gupta and L. S. Davis, “Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers,” in Proceedings of the 10th European Conference on Computer Vision: Part I, ser. ECCV ‘08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 16–29.
  14. S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller, “Multi-class segmentation with relative location prior.”International Journal of Computer Vision, vol. 80, no. 3, pp. 300–316, 2008.10.1007/s11263-008-0140-x
  15. S. Divvala, D. Hoiem, J. Hays, A. Efros, and M. Hebert, “An empirical study of context in object detection,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, June 2009, pp. 1271–1278.10.1109/CVPR.2009.5206532
  16. M. J. Choi, J. Lim, A. Torralba, and A. Willsky, “Exploiting hierarchical context on a large database of object categories,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, June 2010, pp. 129–136.10.1109/CVPR.2010.5540221
  17. N. E. Maillot and M. Thonnat, “Ontology based complex object recognition,”Image and Vision Computing, vol. 26, no. 1, pp. 102 – 113, 2008, cognitive Vision-Special Issue.10.1016/j.imavis.2005.07.027
  18. J. Tighe and S. Lazebnik, “Understanding scenes on many levels,” in Proceedings of the 2011 International Conference on Computer Vision, ser. ICCV ‘11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 335–342.10.1109/ICCV.2011.6126260
  19. S. Gould, J. Zhao, X. He, and Y. Zhang, “Superpixel graph label transfer with learned distance metric,” in ECCV, 2014.10.1007/978-3-319-10590-1_41
  20. A. Oliva and A. Torralba, “Modeling the shape ofthe scene: A holistic representation ofthe spatial envelope,”Int. J. Comput. Vision, vol. 42, no. 3, pp. 145–175, May 2001.10.1023/A:1011139631724
  21. A. J. Smola and B. SchÖlkopf, “A tutorial on support vector regression,”Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug. 2004.10.1023/B:STCO.0000035301.49549.88
  22. J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”Annals of Statistics, vol. 29, pp. 1189–1232, 2000.
  23. G. Li, H. Meng, M. Q. Yang, and J. Y. Yang, “Combining support vector regression with feature selection for multivariate calibration,”Neural Computing and Applications, vol. 18, no. 7, pp. 813–820, 2009.10.1007/s00521-008-0202-6
  24. J. H. Friedman, “Stochastic gradient boosting,”Comput. Stat. Data Anal., vol. 38, no. 4, pp. 367– 378, Feb. 2002.10.1016/S0167-9473(01)00065-2
  25. A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”Frontiers in Neurorobotics, vol. 7, 2013.10.3389/fnbot.2013.00021388582624409142
  26. B. Andres, B. T., and J. H. Kappes, “OpenGM: A C++ library for discrete graphical models,”ArXiv e-prints, 2012.
  27. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten- hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
Language: English
Page range: 1284 - 1312
Submitted on: Jan 15, 2015
Accepted on: Mar 24, 2015
Published on: Jun 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2015 Vektor Dewanto, Aprinaldi,, Zulfikar Ian, Wisnu Jatmiko, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.