Have a personal or library account? Click to login

Automated Telehealth System for Fetal Growth Detection and Approximation of Ultrasound Images

Open Access
|Mar 2015

References

  1. . N. Koizumi, J. Seo, Y. Suzuki, D. Lee, K. Ota, A. Nomiya,S. Yoshizawa, K. Yoshinaka, N. Sugita, Y. Matsumoto, Y. Homma, andM. Mitsuishi, “A control framework for the non- invasive ultrasoundthe agnostic system,” in Intelligent Robots and Systems, 2009. IROS2009. IEEE/RSJ International Conference on, Oct. 2009, pp. 4511–4516.10.1109/IROS.2009.5354839
  2. . C. Castellini and D. Gonzalez, “Ultrasound imaging as a human machine interface in a realistic scenario,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, Nov.2013, pp. 1486–1492.10.1109/IROS.2013.6696545
  3. . G. Carneiro, B. Georgescu, S. Good, and D. Comaniciu, “Detectionand measurement of fetal anatomies from ultrasound images usinga constrained probabilistic boosting tree,” Medical Imaging, IEEETransactions on, vol. 27, no. 9, pp. 1342–1355, Sept. 2008.
  4. . L. Gupta, R. Sisodia, V. Pallavi, C. Firtion, and G. Ramachandran, “Segmentation of 2d fetal ultrasound images by exploitingcontext information using conditional random fields,” in Engineeringin Medicine and Biology Society,EMBC, 2011 Annual InternationalConference of the IEEE, Aug. 2011, pp. 7219–7222.10.1109/IEMBS.2011.609182422256004
  5. . N.K. Suryadevara and S.C. Mukhopadhyay, “Wireless Sensor Network Based Home Monitoring System for Wellness Determination of Elderly”, IEEE Sensors Journal, Vol. 12, No. 6, June 2012, pp. 1965-1972.10.1109/JSEN.2011.2182341
  6. . W. Lu, J. Tan, and R. Floyd, “Automated fetal head detection andmeasurement in ultrasound images by iterative randomized Houghtransform,” Ultrasound Med Biol, vol. 31, no. 7, pp. 929–936, Jul.2005.10.1016/j.ultrasmedbio.2005.04.00215972198
  7. . P. Kultanen, L. Xu, and E. Oja, “Randomized houghtransform(rht),” in Pattern Recognition, 1990. Proceedings, 10th International Conference on, vol.1 Jun. 1990, pp. 631–635 vol.1.
  8. . I. Satwika, R. Rahmatullah, I. Habibie, A. Nurhadiyatna, and W. Jatmiko, “Improved efficient ellipse hough transform for fetal head measurement,” in Advanced Computer Science and Information System,2013. Proceedings., IEEE International Conference on,vol., no., pp.375,379, 28-29 Sept. 2013.10.1109/ICACSIS.2013.6761604
  9. . Y. Xie and Q. Ji, “A new efficient ellipse detection method,” in PatternRecognition, 2002. Proceedings., 16th International Conference on,vol. 2, 2002, pp. 957–960 vol.2.
  10. . Ma’sum, M.A., Jatmiko W., Tawakal M.I., and Afif F.A. “Automated Fetal Organ Detection And Approximation in Ultrasound Images using Boosting Classifier and Hough Transform.”Advanced Computer Science and Information Systems (ICACSIS), 2014 International Conference on,vol., no., pp.455-461, 18-19 Oct. 201410.1109/ICACSIS.2014.7065897
  11. . Rahmatullah R., Ma’sum, M. A., Aprinaldi1, Mursanto P., and Wiweko B. “Automatic Fetal Organs Segmentation Using Multilayer Super Pixel and Image Moment Feature.” Advanced Computer Science and Information Systems (ICACSIS), 2014 International Conference on ,vol., no., pp.415-421, 18-19 Oct. 201410.1109/ICACSIS.2014.7065883
  12. . Satwika, I.P., Habibie, I., Ma’sum, M.A., Febrian, A., and Budianto, E. “Particle Swarm Optimization based 2-Dimensional Randomized Hough Transform for Fetal Head Biometry Detection and Approximation in Ultrasound Imaging.” Advanced Computer Science and Information Systems (ICACSIS), 2014 International Conference on ,vol., no., pp.463-468, 18-19 Oct. 201410.1109/ICACSIS.2014.7065898
  13. . Isa, Sani Muhamad, et al. “Performance Analysis of ECG Signal Compression using SPIHT.” International Journal On Smart Sensing And Intelligent Systems 6.5 (2013): 20112039.10.21307/ijssis-2017-624
  14. . Imah, EllyMatul, Wisnu Jatmiko, and T. Basaruddin. “Electrocardiogram for Biometrics by using Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ): Integrating Feature Extraction and Classification.”International Journal on Smart Sensing and Intelligent Systems 6.5 (2013) : 1891-191710.21307/ijssis-2017-619
  15. . R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rdEdition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2010.
  16. . N.K.Suryadevara, A. Gaddam, R.K.Rayudu and S.C. Mukhopadhyay, “Wireless Sensors Network based safe Home to care Elderly People: Behaviour Detection”, Sens. Actuators A: Phys. (2012), doi:10.1016/j.sna.2012.03.020, Volume 186, 2012, pp. 277 – 283.10.1016/j.sna.2012.03.020
  17. . J. Kennedy and R. Eberhart, “Particle swarm optimization,” in NeuralNetworks, 1995. Proceedings., IEEE International Conference on,vol. 4, Nov 1995, pp. 1942–1948 vol.4.
  18. . H. D. Cheng, Y. Guo, and Y. Zhang, “A novel hough transform basedon eliminating particle swarm optimization and its applications,”PatternRecogn., vol. 42, no. 9, pp. 1959– 1969, Sep. 2009. [Online].Available: http://dx.doi.org/10.1016/j.patcog.2008.11.028.10.1016/j.patcog.2008.11.028
  19. . W. Lu and J. Tan, “Detection of incomplete ellipse in imageswith strong noise by iterative randomized hough transform (irht),”Pattern Recogn., vol. 41, no. 4, pp. 1268–1279, Apr. 2008. [Online].Available: http://dx.doi.org/10.1016/j.patcog.2007.09.006.10.1016/j.patcog.2007.09.006
  20. . R. L. Deter, R. B. Harrist, F. P. Hadlock, and R. J. Carpenter, “Fetal head and abdominal circumferences: I. evaluation of measurement errors,” Journal of Clinical Ultrasound, vol. 10, no. 8, pp. 357–363, 1982. [Online]. Available: http://dx.doi.org/10.1002/jcu.1870100803.10.1002/jcu.1870100803
  21. . V. Chalana, T. C. Winter, D. R. Cyr, D. R. Haynor, and Y. Kim,”Automatic fetal head measurements from sonographic images,” AcadRadiol, vol. 3, no. 8, pp. 628–635, Aug. 1996.10.1016/S1076-6332(96)80187-5
  22. . P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–518. December 2001.
  23. . Schapire, R. E., & Singer, Y.,”Improved boosting algorithms using confidence-rated predictions.” Machine Learning,37, 297–336.1999.10.1023/A:1007614523901
  24. . N. K. Suryadevara and S. C. Mukhopadhyay, “Determining Wellness Through An Ambient Assisted Living Environment”, IEEE Intelligent Systems, May/June 2014, pp. 3037.10.1109/MIS.2014.16
  25. . Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin, F. D., &Kégl, B. “MultiBoost: a multi-purpose boosting package”. The Journal of Machine Learning Research, 13, pp 549553. 2012.
  26. . J. Zhang, H. Tang, D. Chen, and Q. Zhang, “destress: Mobile and remote stress monitoring, alleviation, and management platform,” in Global Communications Conference (GLOBECOM), IEEE, 2012, pp. 2036–2041.10.1109/GLOCOM.2012.6503415
Language: English
Page range: 697 - 719
Submitted on: Nov 5, 2014
Accepted on: Jan 29, 2015
Published on: Mar 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2015 Wisnu Jatmiko, Ikhsanul Habibie, M. Anwar Ma’sum, Robeth Rahmatullah, I Putu Satwika, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.