Have a personal or library account? Click to login
Open Access
|Mar 2015

References

  1. I. Cohen, N. Sebe, A. Garg, et al, “Facial expression detection from video sequences: temporal and static modeling”, Computer Vision and Image Understanding, vol.1, No.91, 2003, pp.160-187.10.1016/S1077-3142(03)00081-X
  2. S. Morishima and H. Harashima, “Emotion space for analysis and synthesis of facial expression”, Proc. 2nd IEEE Int. Workshop on Robot and Human Communication, 1993, pp. 188-193.
  3. C. Shan, S. Gong and P. W. McOwan, “Robust facial expression detection using local binary patterns”, Proc. Int. Conf. on Image Processing, ICIP 2005, vol.2, No.2, 2005, pp.370-373.
  4. P. S. Aleksic and A. K. Katsaggelos, “Automatic facial expression detection using facial animation parameters and multistream HMMs”, IEEE Transactions on Information Forensics and Security, vol.1, No.1, 2006, pp. 3-11.10.1109/TIFS.2005.863510
  5. N. Neggaz, M. Besnassi and A. Benyettou, “Facial expression detection”, Journal of Applied Sciences, vol.15, No.10, 2010, pp. 1572-1579.10.3923/jas.2010.1572.1579
  6. Y. Q. Wang and , L. Liu, “New intelligent classification method based on improved meb algorithm”, International Journal on Smart Sensing and Intelligent Systems, vol. 07, No. 1, 2014, pp. 72-95.10.21307/ijssis-2017-646
  7. G. Zhao and M. Pietikäinen, “Boosted multi-resolution spatiotemporal descriptors for facial expression detection”, Pattern detection letters, vol. 12, No. 30, 2009, pp. 1117-1127.10.1016/j.patrec.2009.03.018
  8. F. Y. Shih, C. F. Chuang and P. S. P. Wang, “Performance comparisons of facial expression detection in JAFFE database”, Int. J. Pattern Detection and Artificial Intelligence, vol.03, No.22, 2008, pp.445-459.10.1142/S0218001408006284
  9. S. Y. Fu, G. S. Yang and X. K. Kuai, “A spiking neural network based cortex-like mechanism and application to facial expression detection”, Computational Intelligence and Neuroscience, 2012, pp.1-13. Online publication date: 1-Jan-2012.10.1155/2012/946589
  10. C. Shan, S. Gong and P. W. McOwan, “Facial expression detection based on local binary patterns: A comprehensive study”, Image and Vision Computing, vol.06, No.27, 2009, pp. 803816.10.1016/j.imavis.2008.08.005
  11. D. C. Turk, C. Dennis and R. Melzack,” The measurement of pain and the assessment of people experiencing pain”, Handbook of Pain Assessment, ed D. C. Turk and R. Melzack, New York: Guilford, 2nd edition, 2001, pp. 1-11.
  12. L. Wang, R. F. Li, and K. Wang, “A novel automatic facial expression detection method based on AAM”, Journal of Computers, vol.03, No.9, 2014, pp.608-617.10.4304/jcp.9.3.608-617
  13. K. M. Prkachin, “The consistency of facial expressions of pain: a comparison across modalities”, Pain, vol. 05, No.3, 1992, pp.297-306.10.1016/0304-3959(92)90213-U
  14. K. M. Prkachin and P. E. Solomon, “The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain”, Pain, vol.139, No.2, 2008, pp.267-274.10.1016/j.pain.2008.04.010
  15. S. J. Zhang, B. Jiang and T. Wang, “Facial expression detection algorithm based on active shape model and gabor wavelet”, Journal of Henan University (Natural Science), vol.05, No.40, 2010, pp.521-524.
  16. W. Zhang and L. M. Xia, “Pain expression detection based on SLPP and MKSVM”, Int. J. Engineering and Manufacturing, No.3, 2011, pp. 69-74.10.5815/ijem.2011.03.11
  17. K. W. Wan, K. M. Lam and K. C. Ng, “An accurate active shape model for facial feature extraction”, Pattern Detection Letters, vol.15, No.26, 2005, pp. 2409-2423.10.1016/j.patrec.2005.04.015
  18. J. M. Lobo and M. F. Tognelli, “Exploring the effects of quantity and location of pseudoabsences and sampling biases on the performance of distribution models with limited point occurrence data”, Journal for Nature Conservation, vol. 19, No.1, 2011, pp.1-7.10.1016/j.jnc.2010.03.002
  19. S. M. Bhandarkar and X. Luo, “Integrated and tracking of multiple faces using particle filtering and optical flow-based elastic matching”, Computer Vision and Image Understanding, vol. 06, No.113, 2009, pp. 708-725.10.1016/j.cviu.2008.11.010
  20. B. K. Horn and B. G. Schunck, “Determining optical flow”, Artificial Intelligence, No.17, 1981, pp.185- 204.10.1016/0004-3702(81)90024-2
  21. G. J. Burghouts and K. Schutte, “Spatio-temporal layout of human actions for improved bag- of-words action “, Pattern Detection Letters, vol.15, No.34, 2013, pp.1861-1869.10.1016/j.patrec.2013.01.024
  22. J. D. Keeler, D. E. Rumelhart and W. K. Leow, “Integrated segmentation and detection of hand-printed numerals”, 1990 NIPS-3: Proc. Conf. on Advances in neural information processing systems 3, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1990, pp. 557–563.
  23. T. G. Dietterich, R. H. Lathrop and T. Lozano-Perez, “Solving the multiple instance problem with axis-parallel rectangles”, Artificial Intelligence, No.89, 1997, pp. 31-71.10.1016/S0004-3702(96)00034-3
  24. A. Zafra, M. Pechenizkiy, and S. Ventura, “Relief-MI: an extension of relief to multiple instance learning”, Neurocomputing, No.75, 2012, pp.210-218.10.1016/j.neucom.2011.03.052
  25. Y. X. Chen, J. B. Bi and J. Z. Wang, “MILES: multiple-instance learning via embedded instance selection”, IEEE Transaction Pattern Analysis and Machine Intelligence, No.28, 2006, pp. 1931-47.10.1109/TPAMI.2006.24817108368
  26. X. F. Song, L. C. Jiao, S. Y. Yang, X. R. Zhang, and F. H. Shang, “Sparse coding and classifier ensemble based multi-instance learning for image categorization”, Signal Processing, No.93, 2013, pp.1-11.10.1016/j.sigpro.2012.07.029
  27. P. Viola, J. Platt, and C. Zhang, “Multiple instance boosting for object “, Advance in Neutral Information Processing System, No.18, 2006, pp.1419-1426.
  28. M. Nakamura, H. Nomiya and K. Uehara, “Improvement of boosting algorithm by modifying the weighting rule”, Annals of Mathematics and Artificial Intelligence, vol.1, No.41, 2004, pp. 95-109.10.1023/B:AMAI.0000018577.32783.d2
  29. T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the multiple instance problem with axis-parallel rectangles”, Artificial Intelligence, vol.89, No.1, 1997, pp.31–71.10.1016/S0004-3702(96)00034-3
  30. S. Andrews and T. Hofmann, “Multiple instance learning via disjunctive programming boosting”, Advances in Neural Information Processing Systems, No.16, 2004, pp. 65-72.
  31. T. Quazi, S.C. Mukhopadhyay, N. Suryadevara and Y. M. Huang, Towards the Smart Sensors Based Human Emotion Recognition, Proceedings of IEEE I2MTC 2012 conference, IEEE Catalog number CFP12MT-CDR, ISBN 978-1-4577-1771-0, May 13-16, 2012, Graz, Austria, pp. 2365-2370.
  32. Y. T. Chen, C. S. Chen, Y. P. Hung ,et al, “Multi-class multi-instance boosting for partbased human “, IEEE 12th Int. Conf. on. Computer Vision Workshops (ICCV Workshops), 2009, pp.1177-1184.10.1109/ICCVW.2009.5457475
  33. G.Sengupta, T.A.Win, C.Messom, S.Demidenko and S.C.Mukhopadhyay, “Defect analysis of grit-blasted or spray printed surface using vision sensing technique”, Proceedings of Image and Vision Computing NZ, Nov. 26-28, 2003, Palmerston North, pp. 18-23.
  34. O. Yakhnenko and V. Honavar, “Multi-Instance multi-label learning for image classification with large vocabularies”, BMVC, 2011, pp.1-12.10.5244/C.25.59
  35. G. Sen Gupta, S.C. Mukhopadhyay and M Finnie, Wi-Fi Based Control of a Robotic Arm with Remote Vision, Proceedings of 2009 IEEE I2MTC Conference, Singapore, May 5-7, 2009, pp. 557-562.10.1109/IMTC.2009.5168512
  36. F. Cheng, J. Yu, H. Xiong, “Facial expression detection in JAFFE dataset based on Gaussian process classification”, IEEE Transactions on Neural Networks, vol.10, No.21, 2010, pp.16851690.10.1109/TNN.2010.206417620729164
Language: English
Page range: 581 - 601
Submitted on: Oct 2, 2014
Accepted on: Jan 24, 2015
Published on: Mar 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2015 Shaoping Zhu, Yongliang Xiao, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.