Have a personal or library account? Click to login

Acoustic-Phonetic Feature Based Dialect Identification in Hindi Speech

Open Access
|Mar 2015

References

  1. R. Huang, J. H. L. Hansen and P. Angkititrakul, “Dialect/Accent Classification using Unrestricted Audio”, IEEE Transaction on Audio, Speech and Language Processing, 15(2), pp. 453-464, 2007.10.1109/TASL.2006.881695
  2. J. C. Wells, “Accent of English”, 1982, VOL. 2; Cambridge University Press, Landon.
  3. S. Sinha, S. S. Agrawal and A. Jain, “Dialectal influences on acoustic duration of Hindi phonemes”, Proceeding of International Conference of The International Committee for the Co-ordination and Standardization of Speech Databases and Assessment Techniques (OCOCOSDA), November 25-27, 2013. pp. 1-5.
  4. D. Mishra and K. Bali,”A comparative phonological study of the dialects of Hindi”, in Proceedings of International Congress of Phonetic Sciences XVII , August 17-21, 2011, pp. 1390-1393.
  5. A. H. M. Russell and M. Carey, “Human and computer recognition of regional accents and ethnic groups from British English speech”, Computer Speech and Language, 27(1), pp. 59-74, 2013.10.1016/j.csl.2012.01.003
  6. E. L. Goh, “Gender and accent identification for Malaysian English using MFCC and Gaussian mixture model”, Doctoral dissertation, Faculty of Computing, Universiti Teknologi, Malaysia, 2013.
  7. P. Dhanalakshmi,S. Palanivel and V. Ramalingam, “Classification of audio signals using AANN and GMM”, Applied Soft Computing, 11(1), pp.716-723, 2011.10.1016/j.asoc.2009.12.033
  8. A. Waibel, “Prosody and speech recognition”. Morgan Kaufmann, 1988.
  9. K. Sreenivasa Rao, “Role of neural network models for developing speech systems”, Sadhana, 36(5), pp. 783-836, 2011.10.1007/s12046-011-0047-z
  10. S. Gray and J.H.L. Hansen, “An integrated approach to the detection and classification of accents/dialects for a spoken document retrieval system”. IEEE Workshop on Automatic Speech Recognition and Understanding, November 27- December 1, 2005, pp. 35-40.10.1109/ASRU.2005.1566480
  11. A.S. Ghotkar and G. K. Kharate, “Study of vision based hand gesture recognition using Indian sign language”, International Journal on Smart Sensing and Intelligent Systems, 7(1), pp. 96-115, March 2014.10.21307/ijssis-2017-647
  12. K. S. Rao, and S. G. Koolagudi, “Identification of Hindi dialects and emotions using spectral and prosodic features of speech”. International Journal of Systemics, Cybernetics and Informatics, 9(4), pp. 24-33, 2011.
  13. S. Sinha, A. Jain and S. S. Agrawal, “Speech Processing for Hindi Dialect Recognition”. Advances in Signal Processing and Intelligent Recognition Systems, Vol 264, pp. 161-169, 2014.10.1007/978-3-319-04960-1_14
  14. R.K. Aggarwal and M. Dave, “Integration of multiple acoustic and language models for improved Hindi speech recognition system”, International Journal of Speech Technology, 15(2), pp. 165-180, 2012.10.1007/s10772-012-9131-y
  15. R.K. Aggarwal and M. Dave, “Performance evaluation of sequentially combined heterogeneous feature streams for Hindi speech recognition system”, Telecommunication Systems, 52(3), pp. 1457-1466, 2013.
  16. A. Jansen and P. Niyogi, “A geometric perspective on speech sounds”, Tech. Rep. TR- 2004-06, University of Chicago, June 2005.
  17. A. Errity and J. McKenna, “A comparision of linear and nonlinear dimensionality reduction methods applied to synthetic speech”, Proceedings of the Annual Conference of International Speech Communication Association (INTERSPEECH), Brighton, September 6-10, 2009, pp. 1095-1098.10.21437/Interspeech.2009-35
  18. Ma Zongming, “Sparse principal component analysis and iterative thresholding”, The Annals of Statistics, 41(2), pp. 772-801, 2013.10.1214/13-AOS1097
  19. A. Zolnay et al., “Using multiple acoustic feature sets for speech recognition”. Speech Communication, 49(6), pp. 514-525, 2007.10.1016/j.specom.2007.04.005
  20. A. Che Soh, K.K.Chow, U. K. Mohammad Yusuf, A. J. Ishak, M. K. Hassan, S.Khamis, “Development of neural network-based electronic nose for herbs recognition”, International Journal on Smart Sensing and Intelligent Systems,7(2), pp. 584-609, June 2014.10.21307/ijssis-2017-671
  21. M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural networks”. AIChE journal, Wiley online, 37(2), pp. 233-243, 1991.10.1002/aic.690370209
  22. K. Sreenivasa Rao, D. Nandi and S. G. Koolagudi. “Film segmentation and indexing using autoassociative neural networks.” International Journal of Speech Technology, 17(1), pp. 65-74, 2014.10.1007/s10772-013-9206-4
  23. S. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences”. IEEE Transactions on Acoustics, Speech and Signal Processing, 28(4), pp. 357-366, 1980.10.1109/TASSP.1980.1163420
  24. A. N. Mishra, M. Chandra, A. Biswas and S. N. Sharan, “Robust features for connected Hindi digits recognition”. International Journal of Signal Processing, Image Processing and Pattern Recognition, 4(2), 79-90, 2011.
  25. Marie-José Kolly and Volker Dellwo, “Cues to linguistic origin: The contribution of speech temporal information to foreign accent recognition”, Journal of Phonetics, Vol. 42, pp. 12-23, 2014.10.1016/j.wocn.2013.11.004
  26. A. Gaddam, G. Sen Gupta and S.C. Mukhopadhyay, “Sensors for Smart Home”, Chapter -7, of the book Human Behavior Recognition Technologies: Intelligent Applications for Monitoring and Security, edited by Hans Guesgen and Stephen Marsland, IGI Global, ISBN 978-1-4666-3683-5, page 130-156, 2013.10.4018/978-1-4666-3682-8.ch007
  27. M. Kulshreshtha and R. Mathur, “Dialect Accent Feature for Establishing Speaker Identity: A case study”, Springer Briefs in Electrical and Computer Engineering, 2012.10.1007/978-1-4614-1138-3
  28. Anindya Nag and Subhas Mukhopadhyay, Smart Home: Recognition of activities of elderly for 24/7; Coverage issues, Proceedings of the 2014 International Conference on Sensing Technology, Liverpool, UK, Sep. 2 to 4, 2014, pp. 480-489, ISSN 1178-5608, http://s2is.org/icst-2014/program.asp.
  29. M. Sigmund, “Statistical Analysis of Fundamental Frequency Based Features in Speech under Stress”. Information Technology and Control Journal, 42(3), pp. 286-291, 2013.10.5755/j01.itc.42.3.3895
  30. S. A. Zahorian and H. Hu, “A spectral/temporal method for robust fundamental frequency tracking”. The Journal of the Acoustical Society of America, 123(6), pp. 4559-4571, 2008.
  31. Y.X. Lai, Y.M. Huang and S.C.Mukhopadhyay, Interconnecting Communication for Recognition and Automation services on Home Grid, Proceedings of IEEE I2MTC 2012 conference, IEEE Catalog number CFP12MT-CDR, ISBN 978-1-4577-1771-0, May 13-16, 2012, Graz, Austria, pp. 2346-2350.
  32. P. G. Deivapalan, M. Jha, R. Guttikonda and H. A. Murthy, “Donlabel: an automatic labeling tool for Indian languages.” Proceedings of Fourteenth National Conference on Communication (NCC), February 1-3, 2008, pp. 263-268.
  33. T. Quazi, S.C. Mukhopadhyay, N. Suryadevara and Y. M. Huang, Towards the Smart Sensors Based Human Emotion Recognition, Proceedings of IEEE I2MTC 2012 conference, IEEE Catalog number CFP12MT-CDR, ISBN 978-1-4577-1771-0, May 13-16, 2012, Graz, Austria, pp. 2365-2370.
  34. B. Yegnanarayana, “Artificial Neural Networks”. Prentice-Hall, New Delhi,2004,
  35. B. Yegnanarayana and S. P. Kishore, “AANN: an alternative to GMM for pattern recognition”, Neural Networks, 15(3), 459-469, 2002.10.1016/S0893-6080(02)00019-9
Language: English
Page range: 235 - 254
Submitted on: Nov 5, 2014
Accepted on: Jan 12, 2015
Published on: Mar 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2015 Shweta Sinha, Aruna Jain, S. S. Agrawal, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.