Have a personal or library account? Click to login
By:
Open Access
|Mar 2015

References

  1. L. Zheng, E. Blasch, X. Zhiyun, Z. Jiying, R. Laganiere, and W.Wei. “Objective Assessment of Multiresolution Image Fusion Algorithms for Context Enhancement in Night Vision: A Comparative Study,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, vol. 34, pp. 94-109, doi: 10.1109/TPAMI.2011.109.10.1109/TPAMI.2011.10921576753
  2. X. Youshen and M.S. Kamel. “Novel Cooperative Neural Fusion Algorithms for Image Restoration and Image Fusion,” IEEE Transactions on Image Processing, 2007, vol. 16, pp. 367-381, doi: 10.1109/TIP.2006.888340.10.1109/TIP.2006.88834017269631
  3. H. Xin, W. Dawei, X. Junfeng and Z. Liangpei. “Quality Assessment of Panchromatic and Multispectral Image Fusion for the ZY-3 Satellite: From an Information Extraction Perspective”, Geoscience and Remote Sensing Letters, IEEE, 2014, vol. 11, pp. 753-757, doi: 10.1109/LGRS.2013.2278551.10.1109/LGRS.2013.2278551
  4. J. Singh and M. Datcu. “Automated interpretation of very-high resolution SAR images. Geoscience and Remote”, 2012 IEEE International on Sensing Symposium, 2012, pp. 37243727, doi: 10.1109/IGARSS.2012.6350508.10.1109/IGARSS.2012.6350508
  5. C. Yuxin Chen, Y.C. Eldar, and A.J. Goldsmith. “Shannon meets Nyquist: Capacity limits of sampled analog channels,” 011 IEEE International Conference on Acoustics, Speech and Signal Processing, 2011, pp. 3104-3107, doi: 10.1109/ICASSP.2011.5946352.10.1109/ICASSP.2011.5946352
  6. Yu, K.-K.R., and Sze-Fong Yau. “Sampling of two-dimensional signals below Nyquist density with application to computer aided tomography,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 1994, pp. 301-304, doi: 10.1109/ICASSP.1994.389472.10.1109/ICASSP.1994.389472
  7. J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, and R.G. Baraniuk. “Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals”, IEEE Transactions on Information Theory, 2010, vol. 56, pp. 520-544, doi: 10.1109/TIT.2009.2034811.10.1109/TIT.2009.2034811
  8. C. Yuxin, Y.C. Eldar, and A.J. Goldsmith. “Shannon Meets Nyquist: Capacity of Sampled Gaussian Channels,” IEEE Transactions on Information Theory, 2013, vol. 59, pp. 4889-4914, doi: 10.1109/TIT.2013.2254171.10.1109/TIT.2013.2254171
  9. J.M. Munoz-Ferreras, R. Gomez-Garcia and F. Perez-Martinez. “Acquisition of multiband signals with minimum sub-Nyquist sampling,” 2012 IEEE International Symposium on Circuits and Systems, 2012, pp. 830-833, doi: 10.1109/ISCAS.2012.6272169.10.1109/ISCAS.2012.6272169
  10. M.L. Malloyvand R.D. Nowak. “Near-Optimal Adaptive Compressed Sensing,” IEEE Transactions on Information Theory, 2014, vol. 60, pp. 4001-4012, doi: 10.1109/TIT.2014.2321552.10.1109/TIT.2014.2321552
  11. S.M.S. Zobly and Y.M. Kadah. “Multiple measurements vectors compressed sensing for Doppler ultrasound signal reconstruction,” 2013 International Conference on Computing, Electrical and Electronics Engineering (ICCEEE), 2013, pp. 319-322, doi: 10.1109/ICCEEE.2013.6633955.10.1109/ICCEEE.2013.6633955
  12. M. Balouchestani. “Low-power wireless sensor network with compressed sensing theory,” 2011 4th Annual Caneus Fly by Wireless Workshop, 2011, pp. 1-4, doi: 10.1109/FBW.2011.5965565.10.1109/FBW.2011.5965565
  13. F. Hao, S.A. Vorobyov, J. Hai Jiang and Q. Taheri. “Permutation Meets Parallel Compressed Sensing: How to Relax Restricted Isometry Property for 2D Sparse,” IEEE Transactions on Signals Signal Processing, pp. 196-210, doi: 10.1109/TSP.2013.2284762.10.1109/TSP.2013.2284762
  14. R. Otazo, L. Feng, H. Chandarana, T. Block, L. Axel, and D.K. Sodickson. “Combination of compressed sensing and parallel imaging for highly-accelerated dynamic MRI,” 2012 9th IEEE International Symposium on Biomedical Imaging, 2012, pp. 980-983, doi: 10.1109/ISBI.2012.6235721.10.1109/ISBI.2012.6235721
  15. P.D. Olcott, G. Chinn, and C.S. Levin. “Compressed sensing for the multiplexing of PET detectors,” 2011 IEEE Conference on Nuclear Science Symposium and Medical Imaging, 2011, pp. 3224-3226, doi: 10.1109/NSSMIC.2011.6153661.10.1109/NSSMIC.2011.6153661
  16. E.J. Candes, J. Romberg, and T. Tao. “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, 2006, vol. 52, pp. 489-509, doi: 10.1109/TIT.2005.86208310.1109/TIT.2005.862083
  17. D.L. Donoho. “Compressed sensing,” IEEE Transactions on Information Theory, 2006, vol. 52, pp. 1298-1306, doi: 10.1109/TIT.2006.871582.10.1109/TIT.2006.871582
  18. E.J. Candes and T. Tao. “Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies,” IEEE Transactions on Information Theory, 2006, vol. 52, pp. 5406-5452, doi: 10.1109/TIT.2006.885507.10.1109/TIT.2006.885507
  19. J. L. Genderen and C. Pohl. “Image fusion:Issues,techniques and applications,” Intelligent Image Fusion. Proceedings Earsel Workshop, Strasbourg , France, 1994, pp. 18-26.
  20. Leongwai Yie, Joel Than chia ming, Features of sleep apnea recognition and analysis, International Journal on Smart Sensing and Intelligent Systems, vol. 7, no. 2, pp, 481 – 497, 2014.10.21307/ijssis-2017-666
  21. G.Sengupta, T.A.Win, C.Messom, S.Demidenko and S.C.Mukhopadhyay, “Defect analysis of grit-blasted or spray printed surface using vision sensing technique”, Proceedings of Image and Vision Computing NZ, Nov. 26-28, 2003, Palmerston North, pp. 18-23.
  22. Chastine Fatichah, Diana purwitasari, Victor hariadi, Faried effendy, Overlapping White Blood cell segmentation and counting on microscopic blood cell images, International Journal on Smart Sensing and Intelligent Systems, vol. 7, no. 3, pp, 1271 – 1286, 2014.10.21307/ijssis-2017-705
Language: English
Page range: 159 - 180
Submitted on: Oct 30, 2014
Accepted on: Jan 8, 2015
Published on: Mar 1, 2015
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2015 Qiuchan Bai, Chunxia Jin, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.