Have a personal or library account? Click to login
By:
Open Access
|Dec 2014

References

  1. Jie Tian and Xin Yang, Biometric identification technology theory and applications, Electronic Industry Press, Beijing, 2005.
  2. C. Cortes and V. Vapnik, “Support vector networks”, Machine Learning, Vol. 20, 1995, pp. 273-297.10.1007/BF00994018
  3. V. Vapnik, “Three Fundamental Concepts of the Capacity of Learning Machines”, Physica A, Vol. 200, 1993, pp. 537-544.10.1016/0378-4371(93)90558-L
  4. V. Vapnik, Statistical Learning Theory, J. Wiley, New York, 1998.
  5. R. Collobert, S. Bengio and Y. Bengio, “A Parallel Mixture of SVMs for Very Large Scale Problems”, Neural Computation, Vol. 14, No. 5, 2002, pp. 1105-1114.10.1162/089976602753633402
  6. J. X. Dong, A. Krzyzak and C. Y. Suen, “A fast parallel optimization for training support vector machine”, Proc. of the 3rd Int. Conf. Machine Learning Data Mining, Vol. LNAI 2734, 2003, pp. 96-105.10.1007/3-540-45065-3_9
  7. G. Zanghirati and L. Zanni, “A parallel solver for large quadratic programs in training support vector machines”, Parallel Comput., Vol. 29, No. 4, 2003, pp. 535-551.10.1016/S0167-8191(03)00021-8
  8. B. H. Guang, K. Z. Mao, C. K. Siew and D. S. Huang, “Fast modular network implementation for support vector machines”, IEEE Trans. Neural Netw., Vol. 16, No. 6, 2005, pp. 1651-1663.10.1109/TNN.2005.85795216342504
  9. L. J. Cao, S. S. Keerthi and J. Q. Zhang, “Parallel Sequential Minimal Optimization for the Training of Support Vector Machines”, IEEE Trans. Neural Netw., Vol. 17, No. 4, 2006, pp. 1039-1049.10.1109/TNN.2006.87598916856665
  10. S. Asharaf, M. N. Murty and S. K. Shevade, “Multiclass Core Vector Machine”, Proc. of ICML’07, 2007, pp. 41-48.10.1145/1273496.1273502
  11. Francesco Orabona, “Better Algorithms for Selective Sampling”, in Proceedings of ICML’11, 2011, pp. 433-440.
  12. Y. Liu, “Combining integrated sampling with SVM ensembles for learning from imbalanced datasets”, Information Processing and Management, Vol. 47, No. 4, 2011.10.1016/j.ipm.2010.11.007
  13. M. Volpi, “Memory-Based Cluster Sampling for Remote Sensing Image Classification”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 8, 2012.10.1109/TGRS.2011.2179661
  14. Abhimanyu Das and David Kempe, “Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection”, Proceedings of ICML’11, 2011, pp. 1057-1064.
  15. I. W. Tsang, J. T. Kwok and P. M. Cheung, “Core vector machines: Fast SVM training on very large data sets”, Journal of Machine Learning Research, Vol. 6, 2005, pp. 363-392.
  16. I. W. Tsang, A. Kocsor and J. T. Kwok, “Simpler Core vector machines with Enclosing Balls”, Proc. 24th Int. Conf. Machine Learning, 2007, pp. 911-918.10.1145/1273496.1273611
  17. Ziquan H., “Algebraic feature extraction of image for recognition”, Pattern Recognition, Vol. 24, No. 3, 1991, pp. 211-219.10.1016/0031-3203(91)90063-B
  18. Turk M. and Penfland A., “Face recognition using eigenfaces”, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1991, pp. 586-591.
  19. Bartlett M. S. and Movellan J. R., “Face Recognition by Independent Component Analysis”, IEEE Transactions on Neural Network, Vol. 13, No, 6, 2002, pp. 1450-1464.10.1109/TNN.2002.804287
  20. Belhumeur P. N., Hespanha J. P., and Kriegman D. J., “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Transactions no Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, 1997, pp. 711-720.10.1109/34.598228
  21. Zhaoqi Bian and Xuegong Zhang, Pattern Recognition, Tsinghua Press, Beijing, 2004.
  22. Yunhong Wang, Tieniu Tan, “Face Identification Based on Singular Value decomposition and Data Fusion”, CHINESE JOURNAL OF COMPUTERS, Vol. 23, No. 6, 2000, pp. 649-653.
  23. Nefian A. V., Hayes M. H., “Hidden Markov Models for Face Recognition”, IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, 1998, pp. 2721-2724.
  24. Shuxian Zhu and Renjie Zhang, “Face recognition base on RBF neural network”, OPTICAL INSTRUMENTS, Vol. 30, No. 2, 2008, pp. 31-33.
  25. Rui Xu and Wunsch, D., “Survey of Clustering Algorithms”, IEEE Transaction on Neural Networks, Vol. 16, No. 3, 2005, pp. 645-678.10.1109/TNN.2005.845141
  26. Han J. and Kamber M., Data Mining: Concepts and Techniques, Second Edition, Morgan Kaufmann, San Francisco, 2006.
  27. Filippone M., Camastra F., and Masulli F., “A Survey of Kernel and Spectral Methods for Clustering”, Pattern Recognition, Vol. 41, No. 1, 2008, pp. 176-190.10.1016/j.patcog.2007.05.018
  28. Burges C. J. C., “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998, pp. 121-167.10.1023/A:1009715923555
  29. Tax D. M. J., Duin R. P. W., “Support Vector Domain Description”, Pattern Recognition Letters, Vol. 20, No. 11-13, 1999, pp. 1191-1199.10.1016/S0167-8655(99)00087-2
  30. Ben-Hur A., Horn D., Siegelmann H. T., Vapnik V., “Support Vector Clustering”, Journal of Machine Learning Research, Vol. 2, No. 12, 2001, pp. 125-137.
  31. Scholkopf B., Williamson R., Smola A., Shawe-Taylor J., Platt J., “Support Vector Method for Novelty Detection”, Advances in Neural Information Processing System, Vol. 12, 2000, pp. 582-588.
  32. Lee J. and Lee D., “An Improved Cluster Labeling Method for Support Vector Clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3, 2005, pp. 461464.10.1109/TPAMI.2005.4715747800
  33. Camastra F. and Verri A., “A Novel Kernel Method for Clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, 2005, pp. 801-805.10.1109/TPAMI.2005.8815875800
  34. Tsang I. W., Kwok J. T., and Cheung P. M., “Core vector machines: Fast SVM training on very large data sets”, Journal of Machine Learning Research, Vol. 6, 2005, pp. 363-392.
  35. S. Asharaf, M. N. Murty, and S. K. Shevade, “Multiclass Core Vector Machine”, in Proc. of ICML’07, 2007, pp. 41-48.10.1145/1273496.1273502
  36. I. W. Tsang, J. T. Kwok, J. M. Zurada, “Generalized Core Vector Machines”, IEEE Trans. on Neural Networks, Vol. 17, No. 5, 2006, pp. 1126-1140.10.1109/TNN.2006.87812317001975
  37. Y. Q. Wang, Y. Li, and L. Chang, “Approximate Minimum Enclosing Ball Algorithm with Smaller Core Sets for Binary Support Vector Machine”, in Proc. CCDC’2010, 2010, pp. 34043408.
  38. Y. Q. Wang, X. T. Niu, and L. Chang, “Multiclass Core Vector Machine with Smaller Core Sets”, in Proc. CCDC’2010, 2010, pp. 525-530.
Language: English
Page range: 1807 - 1829
Submitted on: Jul 6, 2014
Accepted on: Nov 5, 2014
Published on: Dec 1, 2014
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2014 Yongqing Wang, Xiling Liu, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.