Have a personal or library account? Click to login

Empirical Mode Decomposition And Rough Set Attribute Reduction For Ultrasonic Flaw Signal Classification

By:
Yu Wang  
Open Access
|Sep 2014

References

  1. K. Lee and V. Estivill Castro, “Feature extraction and gating techniques for ultrasonic shaft signal classification”, Applied Soft Computing, Vol. 7, No. 1, pp. 156-165, 2007.10.1016/j.asoc.2005.05.003
  2. Kyungmi Lee, “Feature Extraction Schemes for Ultrasonic Non-destructive Testing Inspections”, Advances in Information Sciences and Service Sciences, Vol. 3, No. 3, pp. 125-135, 2011.10.4156/aiss.vol3.issue3.16
  3. A.A. Anastassopoulos, V.N. Nikolaidis and T.P. Philippidis, “A Comparative Study of Pattern Recognition Algorithms for Classification of Ultrasonic Signals”, Neural Computing & Applications, Vol. 8, No. 1, pp. 53-66, 1999.10.1007/s005210050007
  4. A. Shelke, T. Kundu, U. Amjad, K. Hahn and W. Grill, “Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 58, No. 3, pp. 567-577, 2011.10.1109/TUFFC.2011.183921429847
  5. K. Lee, “A Hybrid Classification Approach to Ultrasonic Shaft Signals”, Lecture Notes in Computer Science, Vol. 3339, pp. 11-17, 2005.
  6. K. Lee, “Feature extraction schemes for ultrasonic signal processing”, Proc. IEEE 5th International Conference on Computer Sciences and Convergence Information Technology, pp. 366-372, 2010.
  7. M. Cacciola, S. Calcagno and F.C. Morabito, “Computational intelligence aspects for defect classification in aeronautic composites by using ultrasonic pulses”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 55, No. 4, pp. 870-878, 2008.10.1109/TUFFC.2008.72218467232
  8. Zhao Chihang, Zhong Xin, Dang Qian and Zhao Liye, “De-noising Signal of the Quartz Flexural Accelerometer by Multiwavelet Shrinkage”, International Journal on Smart Sensing and Intelligent Systems, Vol. 6, No. 1, pp. 191-208, 2013.10.21307/ijssis-2017-535
  9. S. Sambath, P. Nagaraj and N. Selvakumar, “Automatic Defect Classification in Ultrasonic NDT Using Artificial Intelligence”, Journal of nondestructive evaluation, Vol. 30, No. 1, pp. 20-28, 2011.10.1007/s10921-010-0086-0
  10. H. Hashim, S. Ramli, N. Wahi, M. S. Sulaiman and N. Hassan, “Recognition of Psioriasis Features via Daubechies D8 Wavelet Technique”, International Journal on Smart Sensing and Intelligent Systems, Vol. 6, No. 2, pp. 711-732, 2013.10.21307/ijssis-2017-562
  11. G.P.P. Gunarathne and Y. Qureshi, “Development of a synthetic A-scan technique for ultrasonic testing of pipelines”, IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 1, pp. 192-199, 2005.10.1109/TIM.2004.839750
  12. U.A. Qidwai, “Autonomous corrosion detection in gas pipelines: a hybrid-fuzzy classifier approach using ultrasonic nondestructive evaluation protocols”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 56, No. 12, pp. 2650-2665, 2009.
  13. N. Bochud, A.M. Gomez and G. Rus, “Robust parametrization for non-destructive evaluation of composites using ultrasonic signals”, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1789-1792, 2011.
  14. X.J. Zhou and T.S. Dillon, “A statistical-heuristic feature selection criterion for decision tree induction”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 8, pp. 834-841, 1991.10.1109/34.85676
  15. Sylvie Legendre, Daniel Massicotte, Jacques Goyette and Tapan K. Bose, “Wavelet Transform Based Method of Analysis for Lamb-Wave Ultrasonic NDE Signals”, IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp. 524-530, 2000.10.1109/19.850388
  16. C. Damerval and S. Meignen, “A Fast Algorithm for Bidimensional EMD”, IEEE Signal Processing Letters, Vol. 12, No. 10, pp. 701-704, 2005.10.1109/LSP.2005.855548
  17. Yanhua Zhang, Lu Yang and Jianping Fan, “Study on feature extraction and classification of ultrasonic flaw signals”, WSEAS Transactions on Mathmatics, Vol. 9, No. 7, pp. 529-538, 2010.
  18. T. Chen, P. Que and Q. Zhang, “Ultrasonic signal identification by empirical mode decomposition and Hilbert transform”, Review of scientific instruments, Vol. 76, No. 8, pp. 1-6, 2005.10.1063/1.2006367
  19. Kiran George and Chien-In Henry Chen, “Biologically-Inspired Signal Processor Using Lateral Inhibition and Integrative Function Mechanisms for High Instantaneous Dynamic Range”, International Journal On Smart Sensing and Intelligent Systems, vol. 4, no. 4, pp. 547-567, 2011.10.21307/ijssis-2017-456
  20. Richard Jensen and Qiang Shen, “New Approaches to Fuzzy-Rough Feature Selection”, IEEE Transactions on Fuzzy Systems, Vol. 17, No. 4, pp. 824-838, 2009.10.1109/TFUZZ.2008.924209
  21. Ye Hongxian, Li Wenchang and Hu Xiaoping, “A Blind Source Separation Method for Convolved Mixtures by Non-Stationary Vibration Signals”, International Journal On Smart Sensing and Intelligent Systems, Vol. 6, No. 3, pp. 973-992, 2013.10.21307/ijssis-2017-575
  22. S. Iyer, S.K. Sinha and B.R. Tittmann, “Ultrasonic signal processing methods for detection of defects in concrete pipes”, Automation in Construction, Vol. 22, pp. 135-148, 2011.10.1016/j.autcon.2011.06.012
  23. Zhao Chihang, Zhong Xin, Dang Qian, Zhao Liye, “De-noising Signal of the Quartz Flexural Accelerometer by Multiwavelet Shrinkage”, International Journal On Smart Sensing and Intelligent Systems, Vol. 6, No. 1, pp. 191-208, 2013.10.21307/ijssis-2017-535
Language: English
Page range: 1401 - 1420
Submitted on: Apr 15, 2014
Accepted on: Sep 1, 2014
Published on: Sep 1, 2014
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Yu Wang, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.