Have a personal or library account? Click to login

Moving Target Detection Based On Global Motion Estimation In Dynamic Environment

Open Access
|Mar 2014

References

  1. M. Betke, E. Haritaoglu and L. S. Davis, “Real-time multiple vehicle detection and tracking from a moving vehicle”, Machine Vision and Applications, December 2000, pp. 69-83.10.1007/s001380050126
  2. H. Tao, H. S. Sawhney and R. Kumar, “Object tracking with Bayesian estimation of dynamic layer representation”, IEEE Trans. PAMI,Vol. 24,No. 1,2002, pp. 75-89.10.1109/34.982885
  3. R. Pless, T. Brodsky and Y. Aloimonos, “Detecting independent motion: The statistics of temporal continuity”, IEEE Trans. PAMI, Vol. 22, No. 8, 2000, pp. 768-773.10.1109/34.868679
  4. W. Bell, P. Felzenszwalb and D. Huttenlocher, “Detection and Long Term Tracking of Moving Object in Aerial Video”, http://www.cs.cornell.edu/vision/wbell/identtracker, March 1999.
  5. J. Konrad, “Motion detection and estimation”, Handbook of Image and Video Processing (A. Bovik, ed.), ch. 3.10, Academic Press, 2000, pp. 207-225.
  6. Yosi Keller and Amir Averbuch, “Fast motion estimation using bidirectional gradient methods”, IEEE Transactions on Image Processing, Vol. 13, No. 8, August, 2004,pp.1042-1054.10.1109/TIP.2004.823823
  7. G. Sorwar, M. Murshed and L. Dooley, “A Fully Adaptive Distance-dependent Thresholding Search (FADTS) Algorithm for Performance-management Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 4,2007, pp.429-440.10.1109/TCSVT.2006.888816
  8. R. T. Collins, A. J. Lipton and T. Kanada, et.al, “A System for Video Surveillance and Monitoring”,VSAM Final Report, Technical report, CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, 2000.
  9. Ali Saad and Shah Mubarak,”COCOA-Tracking in Aerial Imagery”, SPIE, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications, 2006, pp.110-118, Orlando.10.1117/12.667266
  10. K. Haris, S. N. Efstratiadis, N. Maglaveras and C. Pappas, “Image noise reduction based on local classification and iterated conditional modes”, Proc. IWISP, Manchester, U.K, November 1996.10.1016/B978-044482587-2/50076-8
  11. R. Guo and S. M. Pandit, “Automatic Threshold Selection based on Histogram Modes and a Discriminant Criterion”, Machine Vision and Application, No. 10, 1998, pp. 331-338.10.1007/s001380050083
  12. N. Otsu, “A Threshold Selection Method from Gray-level Histograms”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 9,No. 1,1979, pp. 62-66.10.1109/TSMC.1979.4310076
  13. E. R. Dougherty and C. R. Giardina, “Mathematical Methods for Artificial Intelligence and Autonomous Systems”, Prentice-Hall, 1988, pp.319.
  14. C. Anderson, P. Burt and W. G. van der, “Change detection and tracking using Pyramid transformation techniques”, Proceedings of SPIE-Intelligent Robots and Computer Vision, Vol. 579,1985, pp.72-78.10.1117/12.950785
  15. A. J. Lipton, H. Fujiyoshi and R. S. Patil, “Moving Target Classification and Tracking from Real-Time Video”, Proc. Fourth IEEE Workshop on Application and Computer Vision, 1998, pp.8-14.
  16. Y. H. Yang and M. D. Levine, “The background Primal sketch: An approach for tracking moving objects”, Machine Vision and Application, No. 5, 1992, pp.17-34.10.1007/BF01213527
  17. J. B. Kim and H. J. Kim, “Efficient region-based motion segmentation for video monitoring system”, Pattern Recognition Letters, Vol. 24, No.1, 2003, pp.113-128.10.1016/S0167-8655(02)00194-0
  18. J. Barron, D. Fleet and S. Beauchemin, “Performance of optical flow techniques”, International Journal of Computer Vision, Vol. 12, No.1, 1994, pp. 42-77.10.1007/BF01420984
  19. S. Brandt, “Maximum likelihood robust regression with known and unknown residual models”, Proc. of the ECCV2002, pp.97-102.
  20. A. Smolic and I. R.Ohm, “Robust global motion estimation using a simplified M-estimator approach”, Proceedings of the IEEE International Conference on Image Processing, 2000, pp.868-871.
  21. P. Torr and D. Murray, “The development and comparison of robust methods for estimating the fundamental matrix”, Int. Journal of Computer Vision, Vol. 24, No.3, 1997, pp. 271-300.10.1023/A:1007927408552
  22. Z. Y. Zhang, “Determining the epipolar geometry and its uncertainty: A review”, Int. Journal of Computer Vision, Vol. 27, No.2, 1998, pp. 161-195.10.1023/A:1007941100561
  23. Kim Yeon-Ho and A. C. Kak, “Error Analysis of Robust Optical Flow Estimation by Least Median of Squares Methods for the Varing Illumination Model”, IEEE Trans. PAMI, Vol. 28, No.9, 2006, pp. 1408-1435.10.1109/TPAMI.2006.18516929729
  24. R. Subbarao and P. Mee, “Beyond RANSAC: User Independent Robust Regression”, Computer Vision and Pattern Recognition Workshop, 2006, pp.101-105.
Language: English
Page range: 360 - 379
Submitted on: Oct 30, 2013
Accepted on: Feb 6, 2014
Published on: Mar 10, 2014
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 GAO Jun-chai, LIU Ming-yong, XU Fei, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.