Have a personal or library account? Click to login

An Artificial Immune Network Clustering Algorithm For Mangroves Remote Sensing Image

Open Access
|Mar 2014

References

  1. D. M. Alongi, “Present state and future of the world’s mangrove forests,” Environmental Conservation, 2002, 29(3), pp. 331-349.10.1017/S0376892902000231
  2. B. W. Heumann, “Satellite remote sensing of mangrove forests: Recent advances and future opportunities,” Progress in Physical Geography, 2011, 35(1), pp. 87-108.10.1177/0309133310385371
  3. C. Giri, E. Ochieng, L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, N. Duke, “Status and distribution of mangrove forests of the world using earth observation satellite data,” Global Ecology and Biogeography, 2011, 20(1), pp. 154-159.10.1111/j.1466-8238.2010.00584.x
  4. K. Liu, X. Li, X. Shi, S. Wang, “Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning,” Wetlands, 2008, 28(2), pp. 336-346.10.1672/06-91.1
  5. B. W. Heumann, “An Object-Based Classification of Mangroves Using a Hybrid Decision Tree--Support Vector Machine Approach,” Remote Sensing, 2011, 3(11), pp. 2440-2460.10.3390/rs3112440
  6. Y. Luo, M. Liao, J. Yan, C. ZHANG, “A multi-features fusion support vector machine method (MF-SVM) for classification of mangrove remote sensing image,” Journal of Computational Information Sys-terns, 2012, 8(1), pp. 323-334.
  7. V. Rodríguez-Galiano, F. Abarca-Hernández, B. Ghimire, M. Chica-Olmo, P. Atkinson, C. Jeganathan, “Incorporating spatial variability measures in land-cover classification using Random Forest,” Procedia Environmental Sciences, 2011, pp. 344-349.10.1016/j.proenv.2011.02.009
  8. Y. Zhong, L. Zhang, J. Gong, P. Li, “A supervised artificial immune classifier for remotesensing imagery,” Geoscience and Remote Sensing, IEEE Transactions on, 2007, 45(12), pp. 3957-3966.10.1109/TGRS.2007.907739
  9. Y. Luo, M. Liao, J. Yan, C. Zhang, S. Shang, “Development and demonstration of an artificial immune algorithm for mangrove mapping using landsat TM,” Geoscience and Remote Sensing Letters, IEEE, 2013, 10(4), pp. 751-755.10.1109/LGRS.2012.2221675
  10. N. K. Jerne, “Towards a network theory of the immune system,” Annales d’immunologie, 1974.
  11. D. Dasgupta, Z. Ji, F. Gonzalez, “Artificial immune system (AIS) research in the last five years,” CEC’03. The 2003 Congress on Evolutionary Computation, 2003.
  12. J. Hunt, J. Timmis, E. Cooke, M. Neal, C. King. Jisys, “The Envelopment of an Artificial Immune System for Real World Applications,”. City: Springer, 1999.10.1007/978-3-642-59901-9_9
  13. J. Timmis, M. Neal, “A resource limited artificial immune system for data analysis,” Knowledge-Based Systems, 2001, 14(3), pp. 121-130.10.1016/S0950-7051(01)00088-0
  14. L. Nunes de Casto, F. J. Von Zuben, “An evolutionary immune network for data clustering,” Neural Networks, 2000. Proceedings. Sixth Brazilian Symposium on, 2000.
  15. G. B. Bezerra, L. N. de Castro, “Bioinformatics data analysis using an artificial immune network,” City: Springer, 2003.10.1007/978-3-540-45192-1_3
  16. F. O. de França, F. J. Von Zuben, L. N. de Castro, “An artificial immune network for multimodal function optimization on dynamic environments,” Proceedings of the 2005 conference on Genetic and evolutionary computation, 2005.10.1145/1068009.1068057
  17. R. M. Haralick, K. Shanmugam, I. H. Dinstein, “Textural features for image classification,” Systems, Man and Cybernetics, IEEE Transactions on, 1973, 3(6), pp. 610-621.10.1109/TSMC.1973.4309314
Language: English
Page range: 116 - 134
Submitted on: Oct 4, 2013
Accepted on: Feb 5, 2014
Published on: Mar 1, 2014
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Yanmin LUO, Peizhong LIU, Minghong LIAO, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.