Have a personal or library account? Click to login

New Intelligent Classification Method Based On Improved Meb Algorithm

By:
Open Access
|Mar 2014

References

  1. C. Cortes and V. Vapnik, “Support vector networks”, Machine Learning, Vol. 20, 1995, pp. 273-297.10.1007/BF00994018
  2. V. Vapnik, “Three Fundamental Concepts of the Capacity of Learning Machines”, Physica A, Vol. 200, 1993, pp. 537-544.10.1016/0378-4371(93)90558-L
  3. V. Vapnik, Statistical Learning Theory, J. Wiley, New York, 1998.
  4. R. Collobert, S. Bengio and Y. Bengio, “A Parallel Mixture of SVMs for Very Large Scale Problems”, Neural Computation, Vol. 14, No. 5, 2002, pp. 1105-1114.10.1162/089976602753633402
  5. J. X. Dong, A. Krzyzak and C. Y. Suen, “A fast parallel optimization for training support vector machine”, Proc. of the 3rd Int. Conf. Machine Learning Data Mining, Vol. LNAI 2734, 2003, pp. 96-105.10.1007/3-540-45065-3_9
  6. G. Zanghirati and L. Zanni, “A parallel solver for large quadratic programs in training support vector machines”, Parallel Comput., Vol. 29, No. 4, 2003, pp. 535-551.10.1016/S0167-8191(03)00021-8
  7. B. H. Guang, K. Z. Mao, C. K. Siew and D. S. Huang, “Fast modular network implementation for support vector machines”, IEEE Trans. Neural Netw., Vol. 16, No. 6, 2005, pp. 1651-1663.10.1109/TNN.2005.85795216342504
  8. L. J. Cao, S. S. Keerthi and J. Q. Zhang, “Parallel Sequential Minimal Optimization for the Training of Support Vector Machines”, IEEE Trans. Neural Netw., Vol. 17, No. 4, 2006, pp. 1039-1049.10.1109/TNN.2006.87598916856665
  9. S. Asharaf, M. N. Murty and S. K. Shevade, “Multiclass Core Vector Machine”, Proc. of ICML’07, 2007, pp. 41-48.10.1145/1273496.1273502
  10. Francesco Orabona, “Better Algorithms for Selective Sampling”, in Proceedings of ICML’11, 2011, pp. 433-440.
  11. Y. Liu, “Combining integrated sampling with SVM ensembles for learning from imbalanced datasets”, Information Processing and Management, Vol. 47, No. 4, 2011.10.1016/j.ipm.2010.11.007
  12. M. Volpi, “Memory-Based Cluster Sampling for Remote Sensing Image Classification”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 8, 2012.10.1109/TGRS.2011.2179661
  13. Abhimanyu Das and David Kempe, “Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection”, Proceedings of ICML’11, 2011, pp. 1057-1064.
  14. I. W. Tsang, J. T. Kwok and P. M. Cheung, “Core vector machines: Fast SVM training on very large data sets”, Journal of Machine Learning Research, Vol. 6, 2005, pp. 363-392.
  15. I. W. Tsang, A. Kocsor and J. T. Kwok, “Simpler Core vector machines with Enclosing Balls”, Proc. 24th Int. Conf. Machine Learning, 2007, pp. 911-918.10.1145/1273496.1273611
  16. K. Fischer, B. GÄartner and M. Kutz, “Fast smallest-enclosing-ball computation in high dimensions”, Proceedings of the 11th Annual European Symposium on Algorithms, 2003, pp. 630-641.10.1007/978-3-540-39658-1_57
  17. P. Kumar, J. S. B. Mitchell and A. Yildirim, “Computing Core-Sets and Approximate Smallest Enclosing Hyper-Spheres in High Dimensions”, Proc. 5th Workshop on Algorithm Engineering and Experiments, 2003, pp. 45-55.
  18. D. M. J. Tax and R. P. W. Duin, “Support Vector Domain Description”, Pattern Recognition Letters, Vol. 20, No. 14, 1999, pp. 1191-1199.10.1016/S0167-8655(99)00087-2
  19. I. W. Tsang, J. T. Kwok and J. M. Zurada, “Generalizde Core vector machines”, IEEE Transactions on Neural Networks, Vol. 17, No. 5, 2006, pp. 1126-1140.10.1109/TNN.2006.87812317001975
  20. Yongqing Wang, “Simpler Minimum Enclosing Ball: Fast Approximate MEB Algorithm for Extentive Kernel Methods”, CCDC’08, 2008, pp. 3492-3497.10.1109/CCDC.2008.4597996
Language: English
Page range: 72 - 95
Submitted on: Oct 14, 2013
Accepted on: Feb 7, 2014
Published on: Mar 1, 2014
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Yongqing Wang, Lei Liu, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.