Have a personal or library account? Click to login
Electrocardiogram for Biometrics by using Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ): Integrating Feature Extraction and Classification Cover

Electrocardiogram for Biometrics by using Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ): Integrating Feature Extraction and Classification

Open Access
|Dec 2013

References

  1. A. H. Sahoolizadeh, B. Z. Heidari, and C. H. Dehghani, “A New Face Recognition Method using PCA, LDA and Neural Network,”International Journal of Computer Science and Engineering, vol. 2, no. 4, pp. 218–223, 2008.
  2. D. Zhang, G. L. G. Lu, W. L. W. Li, L. Z. L. Zhang, and N. L. N. Luo, “Palmprint Recognition Using 3-D Information,”IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews, vol. 39, no. 5, pp. 505-519, 2009.10.1109/TSMCC.2009.2020790
  3. F. Agrafioti, F. M. Bui, and D. Hatzinakos, “Medical biometrics in mobile health monitoring,”Security and Communication Networks, vol. 4, no. 5, pp. 525-539, 2011.10.1002/sec.227
  4. Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis, “Analysis of Human Electrocardiogram for Biometric Recognition,”EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1, pp. 1-12, 2008.
  5. Y. Wang, K. N. Plataniotis, D. Hatzinakos, T. Edward, S. R. Sr, and C. Engineering, “Integrating Analytic And Appearance Attributes For Human Identification From Ecg Signals,” in IEEE Biometrics Symposium, 2006.10.1109/BCC.2006.4341627
  6. N. Belgacem, “ECG Based Human Authentication using Wavelets and Random Forests,”International Journal on Cryptography and Information Security, vol. 2, no. 2, pp. 1-11, Jun. 2012.10.5121/ijcis.2012.2201
  7. R. D. Labati, A. Genovese, V. Piuri, and F. Scotti, “Wildfire Smoke Detection using Computational Intelligence Techniques Enhanced with Synthetic Smoke Plume Generation,”Systems, Man, and Cybernetics: Systems, IEEE Transactions on, vol. PP , Issue, pp. 1 - 10, 2012.10.1109/CIMSA.2011.6059930
  8. A. Bouchachia and N. Nedjah, “Adaptive Incremental Learning In Neural Networks,”Neurocomputing, vol. 74, no. 11, pp. 1783-1784, May 2011.
  9. H. Atoui, J. Fayn, and P. Rubel, “A novel neural-network model for deriving standard 12- lead ECGs from serial three-lead ECGs: application to self-care.,”IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering in Medicine and Biology Society, vol. 14, no. 3, pp. 883-90, May 2010.10.1109/TITB.2010.2047754
  10. B. M. Wilamowski and H. Yu, “Neural network learning without backpropagation.,”IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 21, no. 11, pp. 1793-803, Nov. 2010.
  11. X. Liu and J. Cao, “Robust State Estimation For Neural Networks With Discontinuous Activations,”IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and Cybernetics Society, vol. 40, no. 6, pp. 142537, Dec. 2010.
  12. T. Kohonen, “Learning-Vector Quantization and the Self-Organizing Map,” in Theory and Applications of Neural Networks, 1992, pp. 235-242.10.1007/978-1-4471-1833-6_15
  13. A. Sato and K. Yamada, “Generalized Learning Vector Quantization,” in Advances in Neural Information Processing Systems 8 Proceedings of the 1995 Conference, 1996, vol. 7, pp. 423-429.
  14. F.-michaelSchleif, T. Villmann, B. Hammer, P. Schneider, and M. Biehl, “Generalized derivative based kernelized Learning Vector Quantization,”Springer, Intelligent Data Engineering and Automated Learning – IDEAL 2010 Lecture Notes in Computer Science, vol. 6283, pp. pp 21-28, 2010.
  15. K. Marika, B. Hammer, M. Biehl, and T. Villmann, “Functional relevance learning in generalized learning vector quantization,”Neurocomputing vol. 90, pp. 85-95, 2012.10.1016/j.neucom.2011.11.029
  16. B. Hammer, M. Strickert, and T. Villmann, “On The Generalization Ability of GRLVQ Networks,”Neural Processing Letters, pp. 109-120, 2005.10.1007/s11063-004-1547-1
  17. B. Kusumoputro, H. Budiarto, and W. Jatmiko, “Fuzzy-neuro LVQ and Its Comparison with Fuzzy Algorithm LVQ In Artificial Odor Discrimination System,”ISA Transactions, pp. 395-407, 2002.10.1016/S0019-0578(07)60097-4
  18. I. M. A. Setiawan, E. M. Imah, and W. Jatmiko, “Arrhytmia Classification using Fuzzy- Neuro Generalized Learning Vector Quantization,” in IEEE International Conference on Advanced Computer Science and Information System 2011 (ICACSIS 2011), 2011, pp. 978-979.
  19. E. Mwebaze et al., “Neurocomputing Divergence-based classification in learning vector quantization,”Neurocomputing, vol. 74, no. 9, pp. 1429-1435, 2011.
  20. E. M. Imah, W. Jatmiko, and T. Basaruddin, “Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) As New Algorithm With Integrating Feature Extraction And Classification For Arrhythmia Heartbeats Classification,” in IEEE international Conference on System Man and Cybernetics, Seoul 2012, 2012.10.1109/ICSMC.2012.6377692
  21. S. García and F. Herrera, “Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy.,”Evolutionary computation, vol. 17, no. 3, pp. 275-306, Jan. 2009.10.1162/evco.2009.17.3.275
  22. B. X. Wang and N. Japkowicz, “Boosting support vector machines for imbalanced data sets,”Knowledge and Information Systems, vol. 25, no. 1, pp. 1-20, 2009.10.1007/s10115-009-0198-y
  23. N. Japkowicz, “Learning from Imbalanced Data Sets: A Comparison of Various Strategies,” in Proc. Am. Assoc. for Artificial Intelligence (AAAI) Workshop, 2000, vol. 68.
  24. C. Vivaracho-pascual and A. Simon-hurtado, “Improving ANN performance for imbalanced data sets by means of the NTIL technique,”IEEE International Join Conference on Neural Networks (IJCNN), 2010.10.1109/IJCNN.2010.5596885
  25. G. de Lannoy, D. Francois, J.Delbeke, and M. Verleysen, “Weighted conditional random fields for supervised interpatient heartbeat classification,”IEEE Transactions on Biomedical Engineering, vol. 59, no. 1, pp. 241-7, Jan. 2012.10.1109/TBME.2011.2171037
  26. X. Wang and K. K. Paliwal, “Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition,”Pattern Recognition, vol. 36, no. 10, pp. 2429-2439, Oct. 2003.
  27. A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet,”Circulation, vol. 101, no. 23, p. 215, 2000.10.1161/01.CIR.101.23.e215
  28. J. A. Van Alsté, W. Van Eck, and O. E. Herrmann, “ECG baseline wander reduction using linear phase filters.,”Computers and biomedical research an international journal, vol. 19, no. 5, pp. 417-427, 1986.10.1016/0010-4809(86)90037-6
  29. C. R. Meyer, “Electrocardiogram Using Cubic Baseline Noise Estimation and Removal Splines and State-Space Computation Techniques”Computers and Biomedical Research, 1977.10.1016/0010-4809(77)90021-0
  30. F. Badilini, A. J. Moss, and E. L. Titlebaum, “Cubic Spline Baseline Estimation In Ambulatory Ecg Recordings,”Engineering In Medicine And Biology, vol. 13, no. 2, pp. 584-585, 1991.
  31. A. Rakotomamonjy, R. Flamary, and F. Yger, “Learning with infinitely many features,”Machine Learning, vol. 91, no. 1, pp. 43-66, DApril 2013.10.1007/s10994-012-5324-5
  32. J. Weng, Cheng G, Poon, “A New Evaluation Measure for Imbalanced Datasets,” in Seventh Austraasian Data Mining Conference (AusDM 2008), 2008.
Language: English
Page range: 1891 - 1917
Submitted on: Jul 3, 2013
Accepted on: Oct 28, 2013
Published on: Dec 16, 2013
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Elly Matul Imah, Wisnu Jatmiko, T. Basaruddin, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.