References
- A. H. Sahoolizadeh, B. Z. Heidari, and C. H. Dehghani, “A New Face Recognition Method using PCA, LDA and Neural Network,”International Journal of Computer Science and Engineering, vol. 2, no. 4, pp. 218–223, 2008.
- D. Zhang, G. L. G. Lu, W. L. W. Li, L. Z. L. Zhang, and N. L. N. Luo, “Palmprint Recognition Using 3-D Information,”IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews, vol. 39, no. 5, pp. 505-519, 2009.10.1109/TSMCC.2009.2020790
- F. Agrafioti, F. M. Bui, and D. Hatzinakos, “Medical biometrics in mobile health monitoring,”Security and Communication Networks, vol. 4, no. 5, pp. 525-539, 2011.10.1002/sec.227
- Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis, “Analysis of Human Electrocardiogram for Biometric Recognition,”EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1, pp. 1-12, 2008.
- Y. Wang, K. N. Plataniotis, D. Hatzinakos, T. Edward, S. R. Sr, and C. Engineering, “Integrating Analytic And Appearance Attributes For Human Identification From Ecg Signals,” in IEEE Biometrics Symposium, 2006.10.1109/BCC.2006.4341627
- N. Belgacem, “ECG Based Human Authentication using Wavelets and Random Forests,”International Journal on Cryptography and Information Security, vol. 2, no. 2, pp. 1-11, Jun. 2012.10.5121/ijcis.2012.2201
- R. D. Labati, A. Genovese, V. Piuri, and F. Scotti, “Wildfire Smoke Detection using Computational Intelligence Techniques Enhanced with Synthetic Smoke Plume Generation,”Systems, Man, and Cybernetics: Systems, IEEE Transactions on, vol. PP , Issue, pp. 1 - 10, 2012.10.1109/CIMSA.2011.6059930
- A. Bouchachia and N. Nedjah, “Adaptive Incremental Learning In Neural Networks,”Neurocomputing, vol. 74, no. 11, pp. 1783-1784, May 2011.
- H. Atoui, J. Fayn, and P. Rubel, “A novel neural-network model for deriving standard 12- lead ECGs from serial three-lead ECGs: application to self-care.,”IEEE transactions on information technology in biomedicine: a publication of the IEEE Engineering in Medicine and Biology Society, vol. 14, no. 3, pp. 883-90, May 2010.10.1109/TITB.2010.2047754
- B. M. Wilamowski and H. Yu, “Neural network learning without backpropagation.,”IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 21, no. 11, pp. 1793-803, Nov. 2010.
- X. Liu and J. Cao, “Robust State Estimation For Neural Networks With Discontinuous Activations,”IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and Cybernetics Society, vol. 40, no. 6, pp. 142537, Dec. 2010.
- T. Kohonen, “Learning-Vector Quantization and the Self-Organizing Map,” in Theory and Applications of Neural Networks, 1992, pp. 235-242.10.1007/978-1-4471-1833-6_15
- A. Sato and K. Yamada, “Generalized Learning Vector Quantization,” in Advances in Neural Information Processing Systems 8 Proceedings of the 1995 Conference, 1996, vol. 7, pp. 423-429.
- F.-michaelSchleif, T. Villmann, B. Hammer, P. Schneider, and M. Biehl, “Generalized derivative based kernelized Learning Vector Quantization,”Springer, Intelligent Data Engineering and Automated Learning – IDEAL 2010 Lecture Notes in Computer Science, vol. 6283, pp. pp 21-28, 2010.
- K. Marika, B. Hammer, M. Biehl, and T. Villmann, “Functional relevance learning in generalized learning vector quantization,”Neurocomputing vol. 90, pp. 85-95, 2012.10.1016/j.neucom.2011.11.029
- B. Hammer, M. Strickert, and T. Villmann, “On The Generalization Ability of GRLVQ Networks,”Neural Processing Letters, pp. 109-120, 2005.10.1007/s11063-004-1547-1
- B. Kusumoputro, H. Budiarto, and W. Jatmiko, “Fuzzy-neuro LVQ and Its Comparison with Fuzzy Algorithm LVQ In Artificial Odor Discrimination System,”ISA Transactions, pp. 395-407, 2002.10.1016/S0019-0578(07)60097-4
- I. M. A. Setiawan, E. M. Imah, and W. Jatmiko, “Arrhytmia Classification using Fuzzy- Neuro Generalized Learning Vector Quantization,” in IEEE International Conference on Advanced Computer Science and Information System 2011 (ICACSIS 2011), 2011, pp. 978-979.
- E. Mwebaze et al., “Neurocomputing Divergence-based classification in learning vector quantization,”Neurocomputing, vol. 74, no. 9, pp. 1429-1435, 2011.
- E. M. Imah, W. Jatmiko, and T. Basaruddin, “Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) As New Algorithm With Integrating Feature Extraction And Classification For Arrhythmia Heartbeats Classification,” in IEEE international Conference on System Man and Cybernetics, Seoul 2012, 2012.10.1109/ICSMC.2012.6377692
- S. García and F. Herrera, “Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy.,”Evolutionary computation, vol. 17, no. 3, pp. 275-306, Jan. 2009.10.1162/evco.2009.17.3.275
- B. X. Wang and N. Japkowicz, “Boosting support vector machines for imbalanced data sets,”Knowledge and Information Systems, vol. 25, no. 1, pp. 1-20, 2009.10.1007/s10115-009-0198-y
- N. Japkowicz, “Learning from Imbalanced Data Sets: A Comparison of Various Strategies,” in Proc. Am. Assoc. for Artificial Intelligence (AAAI) Workshop, 2000, vol. 68.
- C. Vivaracho-pascual and A. Simon-hurtado, “Improving ANN performance for imbalanced data sets by means of the NTIL technique,”IEEE International Join Conference on Neural Networks (IJCNN), 2010.10.1109/IJCNN.2010.5596885
- G. de Lannoy, D. Francois, J.Delbeke, and M. Verleysen, “Weighted conditional random fields for supervised interpatient heartbeat classification,”IEEE Transactions on Biomedical Engineering, vol. 59, no. 1, pp. 241-7, Jan. 2012.10.1109/TBME.2011.2171037
- X. Wang and K. K. Paliwal, “Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition,”Pattern Recognition, vol. 36, no. 10, pp. 2429-2439, Oct. 2003.
- A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet,”Circulation, vol. 101, no. 23, p. 215, 2000.10.1161/01.CIR.101.23.e215
- J. A. Van Alsté, W. Van Eck, and O. E. Herrmann, “ECG baseline wander reduction using linear phase filters.,”Computers and biomedical research an international journal, vol. 19, no. 5, pp. 417-427, 1986.10.1016/0010-4809(86)90037-6
- C. R. Meyer, “Electrocardiogram Using Cubic Baseline Noise Estimation and Removal Splines and State-Space Computation Techniques”Computers and Biomedical Research, 1977.10.1016/0010-4809(77)90021-0
- F. Badilini, A. J. Moss, and E. L. Titlebaum, “Cubic Spline Baseline Estimation In Ambulatory Ecg Recordings,”Engineering In Medicine And Biology, vol. 13, no. 2, pp. 584-585, 1991.
- A. Rakotomamonjy, R. Flamary, and F. Yger, “Learning with infinitely many features,”Machine Learning, vol. 91, no. 1, pp. 43-66, DApril 2013.10.1007/s10994-012-5324-5
- J. Weng, Cheng G, Poon, “A New Evaluation Measure for Imbalanced Datasets,” in Seventh Austraasian Data Mining Conference (AusDM 2008), 2008.