Have a personal or library account? Click to login
Autonomous Multi-Target Interception in Dynamic Settings – On-Line Pursuer Task Allocation Cover

Autonomous Multi-Target Interception in Dynamic Settings – On-Line Pursuer Task Allocation

Open Access
|Sep 2013

References

  1. Chung CF, Furukawa T. Coordinated pursuer control using particle filters for autonomous search-and-capture. Robot Auton Syst. 2009; 57:700-711.10.1016/j.robot.2008.11.002
  2. Biswas S, Gupta S, Yu F, et al. Collaborative Multi-Target Tracking using Networked Micro-Robotic Vehicles. Def Transform Net-Centric Syst. 2007; 6578(12): 1-11.10.1117/12.717919
  3. Sheridan PK, Kosicki P, Liu C, et al. On-Line Task Allocation for the Robotic Interception of Multiple Targets in Dynamic Settings. In: IEEE/ASME Conference on Advanced Intelligent Mechatronics; 2010 July 6-9; Montreal, Canada.10.1109/AIM.2010.5695786
  4. Wu L, Xing C, Lu F, et al. An Anytime Algorithm Applied to Dynamic Weapon-Target Allocation Problem with Decreasing Weapons and Targets. In: IEEE Congress on Evolutionary Computation; 2008 June 1-6; Hong Kong.
  5. 5.Beard BW, McLain TW, Goodrich MA, et al. Coordinated Target Assignment and Intercept for Unmanned Air Vehicles. IEEE Trans. Robot Autom. 2002; 18(6): 911- 922.10.1109/TRA.2002.805653
  6. Tsalatsanis A, Yalcin A, Valavanis KP. Optimized Task Allocation in Cooperative Robot Teams. In: Mediterranean Conference on Control & Automation; 2009 June 2426; Thessaloniki, Greece.10.1109/MED.2009.5164551
  7. Kunwar F, Benhabib B. Advanced Predictive Guidance Navigation for Mobile Robots: A Novel Strategy for Rendezvous in Dynamic Settings. Int. J Smart Sens Intell Syst. 2008; 1( 40): 858-890.10.21307/ijssis-2017-325
  8. Agah F, Mehrandezh M, Fenton RG, et al. On-line Robotic Interception Planning Using Rendezvous-Guidance Technique. J. Intell Robot Syst.: Theory Appl. 2004; 40(1): 2344.
  9. 9.Helvig CS, Robins G, Zelikovsky A. Moving-Target TSP and Related Problems. In: European Symposium on Algorithms; 1998 August 24-26; Venice Italy.10.1007/3-540-68530-8_38
  10. Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J Optim. Theory Appl. 1985; 45(1): 41-51.10.1007/BF00940812
  11. Lin S, Kerninghan BW. An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Oper Res. 1973; 21(2): 498-516.10.1287/opre.21.2.498
  12. Derr K, Manic M: Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments. In: Conference on Human System Interaction. 2009, May 21-23; Catania, Italy.10.1109/HSI.2009.5090958
  13. Chang KY, Jan GE, Su C-M, et al. Optimal Interceptions on Two-Dimensional Grids with Obstacles. J Navig. 2008; 61: 31-34.10.1017/S0373463307004262
  14. McLain TW, Beard RW, Kelsey JM. Experimental Demonstration of Multiple Robot Cooperative Target Intercept. In: AIAA Guidance, Navigation, and Control Conference and Exhibit; 2002 August; Monterey, USA.10.2514/6.2002-4678
  15. Flores Campos JA, Rosas Flores JA, Palacios Montufar C. Robot Trajectory Planning for Multiple 3D Moving Objects Interception: a Polynomial Interpolation Approach. In: Electronics, Robotics and Automotive Mechanics Conference; 2008 September 30 – October 4; Cuernavaca, Mexico.10.1109/CERMA.2008.87
  16. Earl MG, D’Andrea R. A decomposition approach to multi-vehicle cooperative control. Robot Auton Syst. 2007; 55(4): 276-291.10.1016/j.robot.2006.11.002
  17. Reimann J, Vachtsevanos G. UAVs in Urban Operations: Target Interception and Containment. J Intell Robot Syst. 2006; 47(4): 383–396.10.1007/s10846-006-9089-6
  18. 18.Mataric MJ, Sukhatme GS, Ostergaard EH. Multi-Robot Task Allocation in Uncertain Environments. Auton Robot. 2003; 14: 255-263.10.1023/A:1022291921717
  19. Ostergard EH, Mataric MJ, Sukhatme GS. Distributed multi-robot task allocation for emergency handling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001 October 29 – November 3; Hawaii USA.
  20. Ferrari S, Cai C, Fierro R, et al. A Geometric Optimization Approach to Detecting and Intercepting. In: American Control Conference. 2007 July 11-13; New York, USA.10.1109/ACC.2007.4282986
  21. Borg JM, Mehrandezh M, Fenton RG, et al. Navigation-Guidance-Based Robotic Interception of Moving Objects in Industrial Settings. J Intell Robot Syst. 2002; 33(1): 1-23.10.1023/A:1014490704273
  22. Mehrandezh M, Sela MN, Fenton RG, et al. Robotic Interception of Moving Objects Using an Augmented Ideal Proportional Navigation Guidance Technique. IEEE Trans on Syst Man Cybern. 2000; 30(3): 238-250.10.1109/3468.844351
  23. Shetty VK, Sudit M, Nagi R. Priority-based assignment and routing of a fleet of unmanned combat aerial vehicles. Comput Oper Res. 2008; 25:1813-1828.10.1016/j.cor.2006.09.013
  24. Zhu R, Sun D, Zhou Z. Cooperation Strategy of Unmanned Air Vehicles for Multitarget Interception. J Guid, Control, and Dyn. 2005; 28(5): 1068-1072.10.2514/1.14412
  25. Kunwar F, Sheridan PK, Benhabib B. Predictive Guidance-Based Navigation for Mobile Robots: A Novel Strategy for Target Interception on Realistic Terrains. J Intell Robot Syst. 2010; 59(3-4): 367-398.10.1007/s10846-010-9401-3
  26. Kirkpatrick S. Optimization by Simulated Annealing: Quantitative Studies. J Stat Phys. 1984; 34(5-6): 975-986.10.1007/BF01009452
  27. Shneydor NA. Missile Guidance and Pursuit Kinematics, Dynamics, and Control. Horwood Publishing Limited: Great Britain; 1998. p.78-79.10.1533/9781782420590
Language: English
Page range: 1783 - 1807
Submitted on: Aug 1, 2013
Accepted on: Aug 18, 2013
Published on: Sep 5, 2013
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Patricia Kristine Sheridan, Pawel Kosicki, Goldie Nejat, Beno Benhabib, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.