Have a personal or library account? Click to login
Detection and classification of the behavior of people in an intelligent building by camera Cover

Detection and classification of the behavior of people in an intelligent building by camera

Open Access
|Sep 2013

References

  1. T. Emmanuel, S. Intille and K. Larson, “Activity Recognition in the Home Using Simple and Ubiquitous Sensors”, In Proceedings of 2nd International Conference on Pervasive Computing in LNCS, Springer, Vol. 3001, 2004, pp. 158-175.
  2. A. Mahajan, C. Oesch, H. Padmanaban, L. Utterback, S. Chitikeshi and F. Figueroa, “Physical and Virtual Intelligent Sensors for Integrated Health Management Systems”, International Journal on Smart Sensing and Intelligent Systems, Vol. 5, No. 3, September 2012, pp. 559 – 575.10.21307/ijssis-2017-495
  3. T.Jayakumar, C.Babu Rao, John Philip, C.K.Mukhopadhyay, J.Jayapandian, C.Pandian, “Sensors for Monitoring Components, Systems and Processes”, International Journal on Smart Sensing and Intelligent Systems, Vol. 3, No. 1, March 2010, pp. 61-74.10.21307/ijssis-2017-379
  4. P.Wide, “Human-Based Sensing – Sensor Systems to Complement Human Perception”, International Journal on Smart Sensing and Intelligent Systems, vol. 1, no.1, 2008, pp. 57 – 69.10.21307/ijssis-2017-278
  5. S. Boukhenous, “A Low Cost Three-Directional Force Sensor”, International Journal on Smart Sensing and Intelligent Systems, vol. 4, no. 1, 2011, pp. 21-34.10.21307/ijssis-2017-424
  6. M.F. Rahmat, N.H. Sunar, Sy Najib Sy Salim, Mastura Shafinaz Zainal Abidin, A.A Mohd Fauzi and Z.H. Ismail, “Review on Modeling and Controller Design in Pneumatic Actuator Control System”, International Journal on Smart Sensing and Intelligent Systems, vol. 4, no. 4, 2011, pp. 630-661.10.21307/ijssis-2017-460
  7. T. K. Dakhlallah, M. A. Zohdy, “Type-2 Fuzzy Kalman Hybrid Application for Dynamic Security Monitoring Systems based on Multiple Sensor Fusion”, International Journal on Smart Sensing and Intelligent Systems, Vol.4, No.4, 2011, pp. 607-629.10.21307/ijssis-2017-459
  8. X.Pang, P.Bhattacharya, Z.O’Neill, P.Haves, M.Wetter, and T.Bailey; “ Real time building energy simulation using Energy Plus and the building controls virtual test bed”. Proceedings of Building Simulation, 12th Conference of International Building Performance Simulation Association, Sydney, November 2011. Proceedings of Building Simulation 2011, pp. 2890-2896.10.2172/1082182
  9. M.Wetter, “Co-simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed”, Journal of Building Performance Simulation, Vol.4, no.3, 2011 pp. 185-203.10.1080/19401493.2010.518631
  10. T.S. Nouidui, M. Wetter, Z. Li, X. Pang, P. Bhattacharya et P. Haves, “BACnet and analog/digital interfaces of the Building Controls Virtual Test Bed”, Proceedings of 12th International IBPSA Conference Building Simulation, , Sydney,Australia, November 2011, pp. 294-301.10.2172/1168733
  11. D.L. Ha, H. Joumaa, S. Ploix, M. Jacomino. “An optimal approach for electrical management problem in dwellings”. Energy and Buildings, Vol 45, , February 2012, pp 1-14.10.1016/j.enbuild.2011.11.027
  12. Mei-Ling SHYU, Zongxing Xie abd MIN CHEN and Shu-Ching CHEN, ‘‘Video semantic event/concept detection using a subspace-based multimedia data mining framework’’, IEEE transactions on multimedia ISSN 1520-9210, Vol 10, 2008, pp. 252–259.10.1109/TMM.2007.911830
  13. J. K. Aggarwal and Q. Cai, ‘‘Human motion analysis: a review’’, Computer Vision and Image Understanding, Vol 73, 1999, pp. 90-102.10.1006/cviu.1998.0744
  14. D. M. Gavrila, ‘‘The visual analysis of human movement: a survey’’, Computer Vision and Image Understanding, Vol 73, 1999, pp. 82-98.10.1006/cviu.1998.0716
  15. W. Hu, T. Tan, L. Wang, and S. Maybank, ‘‘A survey on visual surveillance of object motion and behaviors’’, Systems, Man, and Cybernetics, Part C:Applications and Reviews, Vol 34, no. 3, 2004, pp. 334-352.10.1109/TSMCC.2004.829274
  16. David A. Forsyth, Okan Arikan, Leslie Ikemoto, James O’brien and amanan, ‘‘Computational studies of human motion: part 1, tracking and motion synthesis’’, Found. Trends. Comput. Graph. Vis, Vol 1, 2005, pp. 77–254.10.1561/0600000005
  17. Ronald Poppe, ‘‘A survey on vision-based human action recognition’’, Image and Vision Computing (IVC), Vol 28, no. 6, 2010, pp.976 – 990.10.1016/j.imavis.2009.11.014
  18. Poppe, R. ‘‘A survey on vision-based human action recognition ‘‘, Image and Vision Computing (IVC), Vol 28, no. 6, 2010, pp. 976 – 990.10.1016/j.imavis.2009.11.014
  19. Turaga, P., R. Chellappa, V. S. Subrahmanian, and O. Udrea , ‘‘ Machine recognition of human activities A survey ‘‘, IEEE Transactions on Circuits and Systems for Video Technology Vol 18, no. 11, 2008, pp.1473–1488.10.1109/TCSVT.2008.2005594
  20. Ali, S. and Shah, ‘‘ Human action recognition in videos using kinematic features and multipleinstance learning’’, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol 32, no. 2, 2010, pp. 288–303.10.1109/TPAMI.2008.28420075459
  21. Dollar, P., V. Rabaud, G. Cottrell, and Belongie , ‘‘ Behavior recognition via sparse spatiotemporal features’’, In 2nd International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (PETS), 2005, pp. 65–72.
  22. Willems, G., T. Tuytelaars, and V. Gool, ‘‘An efficient dense and scale-invariant spatiotemporalinterest point detector’’, In European Conference on Computer Vision (ECCV), Vol 102, 2008, pp. 650-663.10.1007/978-3-540-88688-4_48
  23. Fathi, A. and G. Mori, ‘‘Action recognition by learning mid-level motion features ‘‘, In International Conference on Computer Vision and Pattern Recognition (CVPR), Vol 2, 2008, pp. 726-733.10.1109/CVPR.2008.4587735
  24. Laptev, I., M. Marszałek, C. Schmid, and Rozenfeld , ‘‘ Learning realistic human actions from movies’’, In International Conference on Computer Vision and Pattern Recognition (CVPR), Vol 64, 2008, pp. 107-123.10.1109/CVPR.2008.4587756
  25. Kläser, A., M. Marszałek, and C. Schmid,’’ A spatio-temporal descriptor based on 3dgradients ‘‘, In British Machine Vision Conference (BMVC), 2008, pp. 995-100410.5244/C.22.99
  26. Mauthner, T., P. M. Roth, and H. Bischof, ‘‘Instant action recognition ‘‘, In 16th Scandinavian Conference on Image Analysis (SCIA), 2009, pp1-10.10.1007/978-3-642-02230-2_1
  27. Huang, W. and J. Wu,’’Human action recognition using recursive self organizing map and longest common subsequence matching ‘‘, In International Workshop on Applications of Computer Vision (WACV), 2009, pp. 1 –6.
  28. Wang, L., H. Zhou, S.-C. Low, and Leckie,’’Action recognition via multi-feature fusion and gaussian process classification ‘‘, In International Workshop on Applications of Computer Vision (WACV), 2009, pp. 1-6.10.1109/WACV.2009.5403113
  29. Yang, W., Y. Wang, and G. Mori,’’ Efficient human action detection using a transferable distance function’’, In Asian Conference on Computer Vision (ACCV), Vol 5995, 2009, pp. 417- 426.10.1007/978-3-642-12304-7_39
  30. Zhang, J. and S.Gong ,’’ Action categorization with modified hidden conditional random field’’, Pattern Recognition (PR), Vol 43, no.1, 2010, pp. 197- 203.10.1016/j.patcog.2009.05.015
  31. Laptev, I. and T Lindeberg,’’Velocity adaptation of space-time interest points’’, International Conference on Pattern Recognition (ICPR), 2004, pp. 52–56.10.1109/ICCV.2003.1238378
  32. R. Kehl, M. Bray, and L.Van Gool, ‘‘Full body tracking from multiple views using stochastic sampling’’, interantional conference on Computer Vision and Pattern Recognition, Vol 2, 2005 pp. 129-136.
  33. D. Weinland, R. Ronfard, and E. Boyer, ‘‘Free viewpoint action recognition using motion history volumes’’, Computer Vision and Image Understanding, Vol 104, no. 2, 2006, pp. 249257.10.1016/j.cviu.2006.07.013
  34. F. Lv and R. Nevatia, ‘‘Single view human action recognition using key pose matching and viterbi path searching’’, international conference on Computer Vision and Pattern Recognition, 2007, pp. 1-8.10.1109/CVPR.2007.383131
  35. C. Rao, A. Yilmaz, and M. Shah, ‘‘View-invariant representation and recognition of actions’’, International Journal of Computer Vision, Vol 50, no. 2, 2002, pp. 203-226.10.1023/A:1020350100748
  36. V.Parameswaran and R. Chellappa, ‘‘View invariance for human action recognition’’, International Journal of Computer Vision, Vol 66, no. 1, 2006, pp. 83-101.10.1007/s11263-005-3671-4
  37. A. Gritai, Y. Sheikh, and M. Shah,’’On the use of anthropometry in the invariant analysis of human actions’’, International Conference on Pattern Recognition, Vol 2, 2004, pp. 923-926.10.1109/ICPR.2004.1334410
  38. A. Yilmaza and M. Shah, ‘‘Matching actions in presence of camera motion’’, Computer Vision and Image Understanding, Vol 104, no. 2, 2006, pp. 221-231.10.1016/j.cviu.2006.07.012
  39. C. Rao, A.Gritai, M.Shah, and T. Syeda-Mahmood, ‘‘View-invariant alignment and matching of video sequences’’, International Conference on Computer Vision, Vol 2, 2003, pp. 939-945.10.1109/ICCV.2003.1238449
  40. T. Syeda-Mahmood, A. Vasilescu, and S. Sethi, ‘‘Recognizing action events from multiple viewpoints’’, Detection and Recognition of Events in Video Workshop, 2001, pp. 64-72.
  41. Qiang He and C. Debrunner, ‘‘Individual recognition from periodic activity using hidden markov models’’, Human Motion Workshop, 2000, pp. 47-52.
  42. A.A. Efros, A.C. Berg, G. Mori, and J. Malik, ‘‘Recognizing action at a distance’’, International Conference on Computer Vision, Vol 2, 2003, pp. 726-733.10.1109/ICCV.2003.1238420
  43. R. Cutler and M. Turk, ‘‘View-based interpretation of real-time optical _ow for gesture recognition’’, International Conference on Automatic Face and Gesture Recognition, 1998, pp. 416-421.
  44. J.W. Davis and A.F. Bobick, ‘‘The representation and recognition of action using temporal templates’’, International conference on Computer Vision and Pattern Recognition, 1997, pp. 928-934.
  45. Ojala, T., Pietikainen, M., and Harwood, D, ‘‘A comparative study of texture measures with classification based on feature distributions’’, In Pattern Recognition, Vol 29, 1996, pp. 51–5910.1016/0031-3203(95)00067-4
  46. Ojala, T., Pietikainen, M., and Maenpaa, T, ‘‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’’, Vol 24, no. 7, 2002, pp. 971–987.10.1109/TPAMI.2002.1017623
  47. Ahonen, T., Hadid, A., and Pietikäinen, M.,’’Face description with local binary patterns : application to face recognition’’, IEEE Trans Pattern Anal Mach Intell, Vol 28, no. 12, 2006, pp. 2037–2041.10.1109/TPAMI.2006.24417108377
  48. Tan, X. and Triggs, B, ‘‘Enhanced local texture feature sets for face recognition under difficult lighting conditions’’, In IEEE Conf. on AMFG, 2007, pp. 168 –182.10.1007/978-3-540-75690-3_13
  49. Kolesnik, M. and Fexa, A, ‘‘Multi-dimensional color histograms for segmentation of wounds in images’’, Lecture Notes in Computer Science, Vol 3656, 2005, pp. 1014–1022.10.1007/11559573_123
  50. Swain, M. and Ballard, D, ‘‘Color indexin’’, International Journal of Computer Vision (IJCV), Vol 7, no. 1, 1991, pp. 11–32.10.1007/BF00130487
  51. . Huang, J., Kumar, S., Mitra, M., Zhu, W.-J., and Zabih, R, ‘‘Image indexing using color correlograms’’, In Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 762–768.
  52. Messing, D., van Beek P., and Errico, J, ‘‘The mpeg-7 colour structure descriptor : image description using colour and local spatial information’’, In Proc. International Conference on Image Processing, Vol 1, 2001, pp. 670–673.
  53. Boujemaa, N. and Vertan, C, ‘‘Upgrading color distributions for image retrieval : can we do better ? In Proc’’, of International Conference on Visual Information System (VIS00), 2000, pp. 178–188.10.1007/3-540-40053-2_16
  54. Vertan, C. and Boujemaa, N, ‘‘Embedding fuzzy logic in content based image retrieval’’, In Proc. NAFIPS Fuzzy Information Processing Society 19th International Conference of the North American, 2000, pp. 85–89.
  55. Zhao, R. and Grosky, W, ‘‘From features to semantics : some preliminary results’’, In Proc. IEEE International Conference on Multimedia and Expo ICME 2000, Vol 2, 2000, pp. 679–682
  56. Smith, J. R. and Chang, S. F, ‘‘Tools and techniques for color image retrieval’’, In IST/SPIE Proceedings, 1996, pp. 426–437.10.1117/12.234781
  57. Carson, C., Belongie, S., Greenspan, H., and Malik, J, ‘‘Blobworld : image segmentation using expectation-maximization and its application to image querying’’, IEEE Trans on Pattern Anal and Machine Intill. (PAMI), Vol 24, no. 8, 2002, pp.1026–103810.1109/TPAMI.2002.1023800
  58. C. Cortes and V. Vapnik ,”Support-vector network,” Mach. Learn., Vol 20,1995, pp. 273– 297.10.1007/BF00994018
  59. V. Caselles, J. L. Lisani, J. M. Morel, and G. Sapiro, “Shape preserving local histogram modification”, IEEE Trans. on Image Processing, Vol 8, 1999, pp. 220–229.10.1109/83.74385618267469
  60. D. Sen and P. Sankar,” Automatic exact histogram specification for contrast enhancement and visual system based quantitative evaluation “, IEEE Trans. on Image Processing, Vol 20, 2011, pp. 1211–1220.10.1109/TIP.2010.208367620923736
  61. D. Coltuc, P. Bolon, and J.-M. Chassery, “Exact histogram specification “, IEEE Trans. on Image Processing, Vol 15, 2006, pp. 1143–1152.10.1109/TIP.2005.864170
  62. E. L. Hall, “Almost uniform distributions for computer image enhancement “, IEEE Transactions on Computers, Vol 23, 1974, pp. 207–208.10.1109/T-C.1974.223892
  63. Y. Wan and D. Shi, “Joint exact histogram specification and image enhancement through the wavelet transform”, IEEE Trans. on Image Processing, Vol 16, 2007, pp. 2245–2250.10.1109/TIP.2007.902332
  64. M. Nikolova, Y. Wen, and R. Chan,” Exact histogram specification for digital images using a variational approach “, J. of Mathematical Imaging and Vision, 2012, pp. 1-1710.1007/s10851-012-0401-8
  65. B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Proc. 5th Annu. Workshop on Computational Learning Theory, 1992, pp.144-152.10.1145/130385.130401
  66. T. Joachims, ‘‘Making large-scale support vector machine learning practical, In A. Smola B. Scholkopf, C. Burges, editor, Advances in Kernel Methods : Support Vector Machines”, editors IEEE transactions on information theory, Vol 44, no.2, MIT Press, Cambridge, MA, 1998, pp. 525-536;10.7551/mitpress/1130.003.0015
  67. E.Osuna, R. Freund, and F. Girosi, ‘‘Training Support Vector Machines: an Application to Face Detection’’, roceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ‘97), New York, 1997, pp.130-136.
  68. T.Joachims, ‘‘Making large-scale support vector machine learning practical, In A. Smola B. Scholkopf, C. Burges, editor, Advances in Kernel Methods : Support Vector Machines”, Cambridge, MIT Press, MA, USA, 1999, pp. 169-18410.7551/mitpress/1130.003.0015
Language: English
Page range: 1317 - 1342
Submitted on: Apr 10, 2013
Accepted on: Jul 30, 2013
Published on: Sep 5, 2013
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.