Have a personal or library account? Click to login
By:
Open Access
|Apr 2013

References

  1. D. Cosker, E. Krumhuber, and A. Hilton, “A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling”, Proceeding of IEEE International Conference on Computer Vision, Barcelona, Spain, pp.2296-2303, 2011.
  2. P. Matikainen, R. Sukthankar and M.Hebert, “Feature seeding for action recognition”, Proceeding of IEEE International Conference on Computer Vision, Barcelona, Spain, pp.1716-1723, 2011.
  3. H. Rimminen, J. Lindstrom and R. Sepponen, “Positioning accuracy and multi-target separation with a human tracking system using near field imaging”, International Journal on Smart Sensing and Intelligent Systems, vol.2, no.1, pp.156-175, 2009.10.21307/ijssis-2017-343
  4. G. Kim, E.P. Xing and A. Torralba, “modeling and analysis of dynamic behaviors of web image collections”, Proceeding of European Conference on Computer Vision, Heraklion, Crete, Greece, pp.85-98, 2010.10.1007/978-3-642-15555-0_7
  5. J. Y. Lee and K. Yao, “Multi-target, multi-sensor tracking based on quality-of-information and formal bayesian frameworks”, International Journal on Smart Sensing and Intelligent Systems, vo1.1, no.4, pp.842-851, 2008.10.21307/ijssis-2017-324
  6. X. Wang, M.Q. Li, S. Liu and Q. Ma, “A vision-based real time motion synthesis system”, Proceeding of International Symposium on Computational Intelligence and Design, Zhejiang Sci-Tech University, China, pp.548-553, 2012.10.1109/ISCID.2012.257
  7. Y. Li, T. S. Wang and H.Y. Shum, “Motion Texture: A Two-level Statistical Model for Character Motion Synthesis”, Proceeding of ACM SIGGRAPH, pp.465-472, 2002.10.1145/566654.566604
  8. P. Frank, M. Atsuto and S. Bjorn, “Correlated probabilistic trajectories for pedestrian motion detection”, Proceeding of IEEE International Conference on Computer Vision, Kyoto, Japan, pp.1647-1654, 2009.
  9. P. Huang, A. Hilton and J. Starck, “Human motion synthesis from 3D video”, Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.1478-1485, 2009.
  10. M.C. Chang, N. Krahnstoever and W. Ge, “Probabilistic group-level motion analysis and scenario recognition”, Proceeding of IEEE International Conference on Computer Vision, Barcelona, Spain, pp.747-754, 2011.10.1109/ICCV.2011.6126312
  11. S. K. M. Wong and F.C.S. Poon, “Comments on Approximating Discrete Probability Distributions with Dependence Trees”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, no.3, pp.333-335, 1989.10.1109/34.21803
  12. B. Sapp, C. Jordan, B. Taskar, “Adaptive pose priors for pictorial structures”, Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp.422-429, 2010.10.1109/CVPR.2010.5540182
  13. A. Torsello and E.R. Hancock, “Learning shape-classes using a mixture of treeunions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, no.6, pp.954-967, 2006.10.1109/TPAMI.2006.12516724589
  14. S. Nathan, “Maximum likelihood bounded tree-width markov networks”, Proceeding of UAI, San Francisco, CA, pp.504-511, 2001.
  15. R. Li, T.P. Tian and M.H. Yang, “3D human motion tracking with a coordinated mixture of factor analyzers”, International Journal of Computer Vision, vol.87, no.1-2, pp.170-190, 2010.10.1007/s11263-009-0283-4
  16. Y. Amit and A. Kong, “Graphical templates for model registration”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, no.3, pp.225-236, 1996.10.1109/34.485529
  17. M. Vondrak, L. Sigal and O.C. Jenkins, “Physical simulation for probabilistic motion tracking”, Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, pp.1-8, 2008.10.1109/CVPR.2008.4587580
  18. S. Yang, X. Feng and P. Perona, “Towards detection of human motion”, Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, pp.810-817, 2000.
  19. Y. Song, L. Goncalves, E. Di Bernard and P. Perona, “Monocular Perception of Biological Motion in Johansson Displays”, Computer Vision and Image Understanding, vol.81, no.3, pp. 303-327, 2001.10.1006/cviu.2000.0890
  20. S. Yang, L. Goncalves and P. Perona, “Unsupervised Learning of Human Motion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, no.7, pp.814-827, 2003.10.1109/TPAMI.2003.1206511
  21. P. Larranga, C. M. H. Kuijpers, R. H. Murga and Y. Yurrramendi, “Learning Bayesian network structure by searching for the best ordering with genetic algorithms”, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, pp.487-193, 1996.10.1109/3468.508827
  22. M.Garofalakis and R. Rastogi, “Scalable data mining with model constraints”, SIGKDD Explorations, pp.39-48, 2000.10.1145/380995.381012
  23. C. C. Chiu and P. L. Hus, “A Constraint-Based Genetic Algorithm Approach for Mining Classification Rules”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.35, no.2, pp.205-220, 2005.10.1109/TSMCC.2004.841919
  24. N. Barnier and P. Brisset, “Optimization by hybridization of a genetic algorithm and constraint satisfaction techniques”, Proceeding of IEEE World Congress Computational Intelligence - Evolutionary Computation, pp.645-649, 1998.
  25. N. Bouguila and D. Ziou, “MML-Based Approach for High-Dimensional Unsupervised Learning Using the Generalized Dirichlet Mixture”, Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp.53-60, 2005.
  26. Z. Zivkovic and F. van der Heijden, “Recursive unsupervised learning of finite mixture models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, no.5, pp.651-656, 2004.10.1109/TPAMI.2004.127397015460286
  27. S. Pierard, A. Lejeune and M. Van Droogenbroeck, “A probabilistic pixel-based approach to detect humans in video streams”, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.921-924, 2011.10.1109/ICASSP.2011.5946555
  28. F.M.J. Willems, “Elements of Information Theory”, IEEE Trans on Information Theory, vol.39, no.1, pp.313-315, 1993.10.1109/TIT.1993.1603955
  29. J.A. Joines and C.R. Houchk, “On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s”, In Proc. of IEEE Conference on Evolutionary Computation, vol.2, pp.579-584, 1994.
  30. H.L. Trung, V.L. Anh and K.L. Trung, “An unsupervised learning and statistical approach for Vietnamese word recognition and segmentation”, Proceeding of Asian Conference on Intelligent Information and Database System, pp.195-204, 2010.10.1007/978-3-642-12101-2_21
  31. Carnegie Mellon University Graphics Lab Motion Capture Database, http://www.mocap.cs.cmu.edu.
Language: English
Page range: 583 - 609
Submitted on: Dec 12, 2012
Accepted on: Mar 20, 2013
Published on: Apr 10, 2013
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2013 Fuyuan Hu, Hau San Wong, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.