Have a personal or library account? Click to login

A Versatile Lattice Based Model For Situation Recognition From Dynamic Ambient Sensors

Open Access
|Feb 2013

References

  1. S.Katz et al, “Progress in development of the index of ADL”,The Gerontologist, pp 20-30Vol. 10, Issue 1,1970.10.1093/geront/10.1_Part_1.20
  2. T.Gu, L.Wang, W. Zhanqing,T. Xianping and L. Jian,”A pattern mining approach to sensorbased human activity recognition”, IEEE Transactions on Knowledge and Data Engineering, pp 1359-1372, Vol. 23, Issue 9, September 2011.10.1109/TKDE.2010.184
  3. D.Guan, T.Ma,W.Yuan, Y. Lee, AM JehadSarkar, “Review of Sensor-based Activity Recognition Systems”, pp. 418-33 Vol. 28, Issue 5, IETE Tech Rev,Oct 2011.10.4103/0256-4602.85975
  4. A. Bauer and Y. Fischer, “Task-oriented Situation Recognition”, In Proc. of Cyber Security, Situation Management and Impact Assessment II; and Visual Analytics for Homeland Defense and Security II, SPIE Vol. 7709,2010.10.1117/12.849646
  5. J. Ye, S. Dobson and S. McKeever, “Situation Identification Techniques in Pervasive Computing: A Review”, Pervasive Mobile Computing, pp 36-66, Vol. 8, Issue 1, February 2012.10.1016/j.pmcj.2011.01.004
  6. A. Dahlbom, L. Niklasson,G. Falkman and A. Loutfi, “Towards Template-Based Situation Recognition,” in Proc. of Intelligent Sensing, Situation Management, Impact Assessment and Cyber-Sensing, SPIE Vol. 7352, 2009.10.1117/12.818715
  7. C Carpineto, G Romano, “Concept Data Analysis: Theory and Applications”, John Wiley, 2004.10.1002/0470011297
  8. T VKasteren, G Englebienne and B Kröse, “Transferring Knowledge of Activity Recognition Across Sensor Networks”, In Proceedings of the 8th international conference on Pervasive Computing, pp 283-300, 2010.10.1007/978-3-642-12654-3_17
  9. S Mittal and S L Maskara, “A Review of Bayesian Belief Network Structure Learning Algorithms”, In Proceedings of 8th International Conference on Information, Communications and Signal Processing (ICICS), 13 -16 Dec, Singapore.
  10. S Mittal, AAggarwal, S L Maskara, “Application of Bayesian Belief Networks for Context Extraction from Wireless Sensors Data”, 14th International Conference on Advanced Communication Technology (ICACT2012), pp 410 -415, Korea, 2012.
  11. R Cardell-Oliver and Liu Wei, “Representation and Recognition of Situations in Sensor Networks,” IEEE Communications Magazine, Vol.48, Issue 3, pp.112-117, March 2010.10.1109/MCOM.2010.5434382
  12. Y Oh, J Han and W Woo, “A context management architecture for large-scale smart environments,” IEEE Communications Magazine, Vol. 48, Issue 3, March 201010.1109/MCOM.2010.5434383
  13. A. Dahlbom, L. Niklasson, G. Falkman and A. Loutfi, “Towards template-based situation recognition,” in Proceedings of SPIE on Intelligent Sensing, Situation Management, Impact Assessment, and Cyber-Sensing, Vol. 7352. 2009.10.1117/12.818715
  14. J Ye, L Coyle, S Dobson and P Nixon, “Representing and manipulating situation hierarchies using situation lattices,”Revue d’intelligenceartificielle, Vol. 22, Issue 5, pp 647-667, 2008.10.3166/ria.22.647-667
  15. K. Thirunarayan, C. Henson and A. Sheth, “Situation awareness via Abductive Reasoning from Semantic Sensor data: A preliminary report,” International Symposium on Collaborative Technologies and Systems, pp.111-118, May 2009.10.1109/CTS.2009.5067470
  16. A Srivastav, W Yicheng, E Hendrick,I Chattopadhyay, A Ray and S Phoha,”Information Fusion for Object &Situation Assessment in Sensor Networks,” In Proceedings ofAmerican Control Conference (ACC), pp.1274-1279, 2011.
  17. Lu-An Tang, Yu Xiao, Kim Sangkyum et al., “Multidimensional Sensor Data Analysis in Cyber-Physical System: An Atypical Cube Approach,” International Journal of Distributed Sensor Networks, Vol. 2012, Article ID 724846, 19 pages, 2012.
  18. J Fogarty and S E. Hudson, “Toolkit Support for Developing and Deploying Sensor-Based Statistical Models of Human Situations”, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp 135-144, 2007, ACM, New York,USA.10.1145/1240624.1240645
  19. S. Yau, D. Huang, H. Gong andY. Yao, “Support for Situation Awareness in Trustworthy UbiquitousComputing Application Software,” Software: Practice and Experience, pp 893-921, Vol. 36, No. 9,2006.10.1002/spe.736
  20. P. Costa, G. Guizzardi, J. Almeida, L. Pires and M. Van Sinderen, “Situations inConceptual Modeling of Context,”In Proceedings of the 10th IEEE International Enterprise Distributed Object Computing Conference Workshops, pp 6-16, October, 2006.Hong Kong.10.1109/EDOCW.2006.62
  21. S. W. Loke, “Representing and Reasoning with Situations for Context-Aware Pervasive Computing: ALogic Programming Perspective”, Knowledge Engineering Review, pp 213-233, Vol. 19 Issue 3, 2004.10.1017/S0269888905000263
  22. G. Thomson, S.Terzis and P. Nixon, “Situation Determination with Reusable Situation Specifications,” InProceedings of 4th IEEE International Conference on Pervasive Computing and Communications, pp 620-623, March 2006.
  23. T. Emmanuel, S. Intille and K. Larson, “Activity Recognition in the Home Using Simple and Ubiquitous Sensors”, In Proceedings of 2nd International Conference on Pervasive Computing in LNCS, Springer, Vol. 3001, pp 158-175,2004.
  24. N. Bicocchi, M. Lasagni andF. Zambonelli, “Bridging Vision and Commonsense forMultimodal Situation Recognition in Pervasive Systems,” 12thIEEE International Conference on Pervasive Computing and Communications,pp48-56, March 2012.10.1109/PerCom.2012.6199848
  25. L. Atallah et al., “Distributed Inferencing with Ambient and Wearable Sensors”, Wireless Communications and Mobile Computing, pp 117-131, Vol. 12, Issue 1, 2010.10.1002/wcm.893
  26. Y. Fischer, A. Bauer and J.Beyerer, “A Conceptual Framework for Automatic Situation Assessment,” in Proceedings of First International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp.234-239, 2011.10.1109/COGSIMA.2011.5753451
  27. A. Mahajan, C. Oesch, H. Padmanaban, L. Utterback, S. Chitikeshi and F. Figueroa, “Physical and Virtual Intelligent Sensors for Integrated Health Management Systems”, International Journal on Smart Sensing and Intelligent Systems, pp 559 – 575, Vol. 5, No. 3, September 2012.10.21307/ijssis-2017-495
  28. B.Ganter and R.Wille, “Formal Concept Analysis: Mathematical Foundations”, Springer Verlag, 1999.10.1007/978-3-642-59830-2
  29. K. Dalkir, “Knowledge Management in Theory and Practice”, The MITPress, 2011.
  30. http://conexp.sourceforge.net/
  31. J. Poelmans et al., “Formal Concept Analysis in Knowledge Discovery: ASurvey”, In Proceedings of 18th International Conference on Conceptual Structures: From Information to Intelligence,pp 139-153, 2010.10.1007/978-3-642-14197-3_15
  32. J. Herethet al.,”Conceptual Knowledge Discovery and Data Analysis”, In Proceedings of 8th International Conference onConceptual Structures: Logical, Linguistic, and Computational Issues, pp 421-437, 2000.10.1007/10722280_29
  33. Y. Zhao, K. George and U. Fayyad, “Hierarchical Clustering Algorithms for Document Datasets”, Data Mining and Knowledge Discovery, pp 141-168, Vol.10, Issue 2, March 2005.10.1007/s10618-005-0361-3
  34. A. Mannini and A. Sabatini, “Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers”, Sensors,pp. 1154-1175,Vol. 10,Issue 2, February 2010.
Language: English
Page range: 403 - 432
Submitted on: Oct 9, 2012
Accepted on: Feb 10, 2013
Published on: Feb 20, 2013
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2013 Sangeeta Mittal, Krishna Gopal, S.L. Maskara, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.