I. Ismail, J. C. Gamio, S. F. A. Bukhari, and W. Q. Yang, “Tomography for multi-phase flow measurement in the oil industry,” Flow Measurement and Instrumentation, vol. 16, pp. 145-155, 2005.10.1016/j.flowmeasinst.2005.02.017
M. A. Bennett, R. M. West, S. P. Luke, and R. A. Williams, “The investigation of bubble column and foam processes using electrical capacitance tomography,” Minerals Engineering, vol. 15, pp. 225-234, 2002.10.1016/S0892-6875(02)00005-5
S. Z. Mohd Muji, R. Abdul Rahim, M. H. Fazalul Rahiman, Z. Zakaria, E. J. Mohamad, and M. S. Karis, “The Linearity of Optical Tomography: Sensor Model and Experimental Verification,” Sensors & Transducers, vol. 132, no. 9, pp. 40-46, 2011.
E. Schleicher, M. J. Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe,” Meas. Sci. Technol, vol. 94006, no. 19, p. 14, 2008.
C. Yan, J. Zhong, Y. Liao, S. Lai, M. Zhang, and D. Gao, “Design of an applied optical fiber process tomography system,” Sensors And Actuators, vol. 104, pp. 324-331, 2005.10.1016/j.snb.2004.05.027
S. Ibrahim, R. G. Green, K. Dutton, K. Evans, R. A. Rahim, and A. Goude, “Optical sensor configurations for process tomography,” Meas. Sci. Technol, vol. 10, pp. 1079-1086, 1999.
R. A. Rahim, L. C. Leong, K. S. Chan, S. Sulaiman, and J. F. Pang, “Tomographic Imaging: Multiple Fan Beam Projection Technique Using Optical Fibre Sensors,” Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 2005. CCSP 2005. 1st International Conference on 14-16 Nov. 2005, pp. 115-119, 2005.
R. A. Rahim, P. J. Fea, C. K. San, and M. H. Fazalul Rahiman, “Optical Tomography: Infrared Tomography Sensor Configuration Using 4 Parallel Beam Projections,” Sensors & Transducers, vol. 72, no. 10, pp. 761-768, 2006.
M. S. Saad, “Concentration and Velocity Measurement of Flowing Objects Using Optical and Ultrasonic Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2007.
L. L. Chen, “Implementation of Multiple Fan Beam Projection Technique in Optical Fibre Process Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2005.
S. Ibrahim, R. G. Green, K. Dutton, and R. Abdul Rahim, “Lensed optical fiber sensors for on-line measurement of flow.,” ISA transactions, vol. 41, no. 1, pp. 13-8, Jan. 2002.10.1016/S0019-0578(07)60198-0
S. Z. Mohd Muji, M. Morsin, and R. Abdul Rahim, “Criteria for sensor selection in optical tomography,” in 2009 IEEE Symposium on Industrial Electronics & Applications, 2009, no. Isiea, pp. 510-514.10.1109/ISIEA.2009.5356426
R. A. Rahim, K. S. Chan, J. F. Pang, and L. C. Leong, “A Hardware Development for Optical Tomography System using Switch Mode Fan Beam Projection,” Sensors and Actuators A: Physical, vol. 120, no. 1, pp. 277-290, Apr. 2005.10.1016/j.sna.2004.11.038
T. Dyakowski, L. F. C. Jeanmeure, and A. J. Jaworski, “Applications of electrical tomography for gas – solids and liquid – solids flows — a review,” Powder Technology, vol. 112, pp. 174-192, 2000.10.1016/S0032-5910(00)00292-8
P. Dugdale, R. G. Green, A. J. Hartley, R. Jackson, and J. Landauro, “Optical sensors for process tomography,” ECAPT 1992, Process Tomography: A Strategy for Industrial Exploitation, European Concerted Action on Process Tomography, Manchester, United Kingdom.
R. G. Green, R. Abdul Rahim, K. Evans, F. J. Dickin, B. D. Naylor, and T. P. Pridmore, “Concentration profiles in a gravity chute conveyor by optical tomography measurement,” Powder Technology, vol. 95, no. 1, pp. 49-54, Jan. 1998.10.1016/S0032-5910(97)03315-9
R. A. Rahim, C. K. Thiam, M. Hafiz, and F. Rahiman, “An Optical Tomography System Using a Digital Signal Processor,” Sensors, vol. 8, pp. 2082-2103, 2008.
Y. Zheng and Q. Liu, “Investigation on concentration distribution and mass flow rate measurement for gravity chute conveyor by optical tomography system,” Measurement, vol. 39, pp. 643-654, 2006.10.1016/j.measurement.2006.01.004
M. R. Rzasa and A. Plaskowski, “Application of optical tomography for measurements of aeration parameters in large water tanks,” Meas. Sci. Technol, no. 14, pp. 199-204, 2003.10.1088/0957-0233/14/2/307
M. . Beck, R. . Green, and “ R. Thorn, “Non-intrusive Measurement of Solid Mass Flow in pneumatic conveying,” J.Phys. E:Sci.Instrum., vol. 20, no. 7, pp. 835-840.10.1088/0022-3735/20/7/002
M. H. Fazalul Rahiman, “Real Time Velocity Profile Generation of Powder Conveying Using Electrical Charge Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2002.
G. C. Xie, A. L. Stott, S. M. Huang, A. Plaskowski, and M. S. Beck, “Mass-flow Measurement Of Solids Using Electrodynamics and Capacitance Transducers.,” J. Phys. E:Sci. Instrum, vol. 22, no. 9, pp. 712-719, 1989.10.1088/0022-3735/22/9/007
R. A. Rahim, K. T. Chiam, M. H. F. Rahiman, and “ P. Jayasuman, “Velocity Profile Measurement Using Digital Signal Processor-Based Optical Tomography System,” IEEE Sensors Journal, vol. 9, no. 9, pp. 1076-1083, 2009.
R. Abdul Rahim, P. J. Fea, and C. K. San, “Optical tomography: real-time velocity profile measurement using pixel-to-pixel and sensor-to-sensor method,” Optical Engineering, vol. 45, no. 3, p. 033604, 2006.
S.Ibrahim, R.G.Green, K.Evans, K. Dutton, and R. A. Rahim, “Optical Tomography for process measurement and control,” in Proc. Control UKACC Int. Conf Sept 4-7, 2000,, pp. 188190.
R. Abdul Rahim, Y. Mohd Yunos, M. H. Fazalul Rahiman, S. Z. Mohd Muji, C. Kok Thiam, and H. Abdul Rahim, “Optical tomography: Velocity profile measurement using orthogonal and rectilinear arrangements,” Flow Measurement and Instrumentation, vol. 23, no. 1, pp. 49-55, Mar. 2012.10.1016/j.flowmeasinst.2011.10.006
C. Tan and F. Dong, “Cross Correlation Velocity of Oil-water Two-Phase Flow by a DualPlane Electrical Resistance Tomography System,” IEEE, 2010.10.1109/IMTC.2010.5488276
W.L. Yaw, “Real-Time Mass Flow Rate Measurement for Bulk Solid Flow Using Electrodynamic Tomography System,” Master Thesis, Universiti Teknologi Malaysia, 2007.
C. Qiu, B. S. Hoyle, and F. J. W. Podd, “Engineering and application of a dual-modality process tomography system,” Flow Measurement and Instrumentation, vol. 18, pp. 247-254, 2007.10.1016/j.flowmeasinst.2007.07.008
M.R.Rzasa, “The measuring method for tests of horizontal two-phase gas–liquid flows, using optical and capacitance tomography.,” Nuclear Engineering and Design,, vol. 239, no. 4, pp. 699-707, 2009.10.1016/j.nucengdes.2008.12.020
R. Mohd Zain, “The Development Of A Dual Modality Tomography (DMT) System Using Optical And Capacitance Sensors For Solid/Gas Flow Measurement,” Master Thesis, Universiti Teknologi Malaysia, 2009.
S. Z. M. Muji et al., “Optical Tomography: A Review On Sensor Array, Projection Arrangement and Image Reconstruction Algorithm,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7, pp. 1-17, 2011.
N. Mohammad Rohi, “Dual modality tomography system using optical and electrodynamic sensors to obtain tomographic images of solid flow,” Master Thesis, Universiti Teknologi Malaysia, 2009.
B. A. Cattle and R. M. West, “A two-dimensional dual-modality tomography technique for a radioactive waste separation process,” Annals of Nuclear Energy, vol. 33, pp. 1236-1244, 2006.
L. Bilro, S. A. Prats, J. L. Pinto, J. J. Keizer, and R. N. Nogueira, “Design and performance assessment of a plastic optical fibre-based sensor for measuring water turbidity,” Measurement Science and Technology, vol. 21, no. 10, p. 107001, Oct. 2010.
A. F. B. Omar and M. Z. B. Matjafri, “Turbidimeter design and analysis: A review on optical fiber sensors for the measurement of water turbidity,” Sensors, vol. 9, no. 10, pp. 83118335, Jan. 2009.
I. Niskanen, J. Räty, and K.-E. Peiponen, “A multifunction spectrophotometer for measurement of optical properties of transparent and turbid liquids,” Measurement Science and Technology, vol. 17, no. 12, p. N87-N91, Dec. 2006.10.1088/0957-0233/17/12/N03
P. Aiestaran, J. Arrue, and J. Zubia, “Design of a Sensor Based on Plastic Optical Fibre (POF) to Measure Fluid Flow and Turbidity,” Sensors, vol. 9, pp. 3790-3800, 2009.
M. Borecki, “Intelligent Fiber Optic Sensor for Estimating the Concentration of a MixtureDesign and Working Principle,” Sensors, pp. 384-399, 2007.10.3390/s7030384
C. Jutten and J. Herault, “Blind separation of sources, Part 1: An adaptive algorithm based on neuromimetic architecture,” Signal Processing, vol. 24, pp. 1-10, 1991.10.1016/0165-1684(91)90079-X
N. Delfosse and P. Loubaton, “Adaptive Separation of Independent Sources: A Deflation Approach,” Signal Processing, vol. 45, pp. 59-83, 1995.10.1016/0165-1684(95)00042-C
C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals (Topical review),” Pysical. Meas., vol. 26, no. 1, p. R15-R39, 2005.10.1088/0967-3334/26/1/R0215742873
N. Katsumata and Y. Matsuyama, “Database retrieval for similar images using ICA and PCA bases,” Eng. Appl. Artif. Intell., vol. 18, no. 6, pp. 705-717, 2005.10.1016/j.engappai.2005.01.002
Y. Xu, H. Wang, Z. Cui, F. Dong, and Y. Yan, “Separation of Gas-Liquid Two-Phase Flow Through Independent Component Analysis,” IEEE Instrumentation And Measurement, vol. 59, no. 5, pp. 1294-1302, 2010.
G. Wang, Q. Ding, and Z. Hou, “Independent component analysis and its applications in signal processing for analytical chemistry,” Trends in Analytical Chemistry, vol. 27, no. 4, pp. 368-376, 2008.10.1016/j.trac.2008.01.009
F. Esposito et al., “Spatial independent component analysisof fuctional MRI time-series: To what extent do result depend on algorithm used?,” Hum. Brain Mapp., vol. 16, no. 3, pp. 146157, 2002.