Have a personal or library account? Click to login

Effect of Ceo2 Doping on the Structure, Electrical Conductivity and Ethanol Gas Sensing Properties of Nanocrystalline Zno Sensors

Open Access
|Sep 2012

References

  1. [1]J. Shi, J. Li, Y. Zhu, F. Wei and X. Zhang, Nanosized SrCO3-based chemiluminescence sensor for ethanol, Analytica Chimica Acta, Vol. 466, 2002, pp. A. M. El-Sayed, F. M. Ismail, M. H. Khder, M. E. M. Hassouna and S. M. Yakout, Effect of CeO2 Doping on the Structure, Electrical Conductivity and Ethanol Gas Sensing Properties of Nanocrystalline ZnO Sensors10.1016/S0003-2670(02)00549-4
  2. [2]G. Neri, A. Bonavita, G. Micali, N. Donato, F. A. Deorsola, P. Mossino, I. Amato and B. De Benedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion, Sensors and Actuators B, Vol. 117, 2006, pp. 196-204.10.1016/j.snb.2005.11.032
  3. [3]B. P. J. de Lacy Costello, R. J. Ewen, N. Guernion and N. M. Ratcliffe, Highly sensitive mixed oxide sensors for the detection of ethanol, Sensors and Actuators B, Vol. 87, 2002, pp. 207-210. 10.1016/S0925-4005(02)00220-4
  4. [4]N. V. Hieu, N. A. P. Duc, T. Trung, M. A. Tuan and N. D. Chien, Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: A competitive sensor for ethanol and liquid petroleum gas, Sensors and Actuators B: Chemical, Vol. 144, 2010, pp. 450-456.10.1016/j.snb.2009.03.043
  5. [5]S. D. Shinde, G. E. Patil, D. D. Kajale, D. V. Ahire, V. B. Gaikwad and G. H. Jain, Synthesis of ZnO nanorods by hydrothermal method for gas sensing applications, International Journal on Smart Sensing and Intelligent Systems, Vol. 5, No. 1, 2012, pp. 57-70. 10.21307/ijssis-2017-470
  6. [6]R. C. Singh, O. Singh, M. P. Singh and P. S. Chandi, Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors, Sensors and Actuators B, Vol. 135, 2008, pp. 352-357.10.1016/j.snb.2008.09.004
  7. [7]L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang and S. Wang, ZnO nanorod gas sensor for ethanol detection, Sensors and Actuators B, Vol. 162, 2012, pp. 237-243.10.1016/j.snb.2011.12.073
  8. [8]K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases, Sensors and Actuators B, Vol. 160, 2011, pp. 580-591.10.1016/j.snb.2011.08.032
  9. [9]S. Choopun, N. Hongsith, P. Mangkorntong and N. Mangkorntong, Zinc oxide nanobelts by RF sputtering for ethanol sensor, Physica E, Vol. 39, 2007, pp. 53-56.10.1016/j.physe.2006.12.053
  10. [10]C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai and D. Zeng, Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles, Materials Science and Engineering B, Vol. 141, 2007, pp. 43-48. 10.1016/j.mseb.2007.05.008
  11. [11]C. Liewhiran and S. Phanichphant, Effects of Palladium Loading on the Response of a Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor, Sensors, Vol. 7, 2007, pp. 1159-1184. 10.3390/s7071159
  12. [12]N. Hongsith and S. Choopun, Effect of Platinum Impregnation on ZnO Tetrapods for Ethanol Sensor, Advanced Materials Research, Vol. 55-57, 2008, pp. 289-292.10.4028/www.scientific.net/AMR.55-57.289
  13. [13]E. Wongrat, P. Pimpang and S. Choopun, Comparative study of ethanol sensor based on gold nanoparticles: ZnO nanostructure and gold: ZnO nanostructure, Applied Surface Science, Vol. 256, 2009, pp. 968-971.10.1016/j.apsusc.2009.02.046
  14. [14]K. Zheng, L. Gu, D. Sun, X. Mo and G. Chen, The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods, Materials Science and Engineering B, Vol. 166, 2010, pp. 104-107.10.1016/j.mseb.2009.09.029
  15. [15]L. Peng, T.-F. Xie, M. Yang, P. Wang, D. Xu, S. Pang and D.-J. Wang, Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature, Sensors and Actuators B, Vol. 131, 2008, pp. 660-664.10.1016/j.snb.2007.12.060
  16. [16]Y.-J. Li, K.-M. Li, C.-Y. Wang, C.-I. Kuo and L.-J. Chen, Low-temperature electrodeposited Co-doped ZnO nanorods with enhanced ethanol and CO sensing properties, Sensors and Actuators B, Vol. 161, 2012, pp. 734-739.10.1016/j.snb.2011.11.024
  17. [17]S. C. Navale, V. Ravi and I. S. Mulla, Investigations on Ru doped ZnO: Strain calculations and gas sensing study, Sensors and Actuators B, Vol. 139, 2009, 466-470.10.1016/j.snb.2009.03.068
  18. [18]F. D. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis and W. L. Estrada, Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour, Thin Solid Films, Vol. 373, 2000, pp. 137-140.10.1016/S0040-6090(00)01120-2
  19. [19]S. C. Tsang and C. Bulpitt, Rare earth oxide sensors for ethanol analysis, Sensors and Actuators B, Vol. 52, 1998, pp. 226-235.10.1016/S0925-4005(98)00233-0
  20. [20]D. Haridas, A. Chowdhuri, K. Sreenivas and Vinay Gupta, Enhanced LPG response characteristics of SnO2 thin film based sensors loaded with Pt clusters International journal on smart sensing and intelligent systems, Vol. 2, No. 3, 2009, pp. 503-514.10.21307/ijssis-2017-364
  21. [21]S. Maensiri, P. Laokul and V. Promarak, Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone), Journal of Crystal Growth, Vol. 289, 2006, pp. 102-106.10.1016/j.jcrysgro.2005.10.145
  22. [22]C. P. Rezende, J. B. da Silva and N. D. S. Mohallem, Influence of drying on the characteristics of zinc oxide nanoparticles, Brazilian Journal of Physics, Vol. 39, 2009, pp. 248-251.10.1590/S0103-97332009000200022
  23. [23]Y. J. Kwon, K. H. Kim, C. S. Lim and K. B. Shim, Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route, Journal of Ceramic Processing Research., Vol. 3, 2002, pp. 146-149.
  24. [24]P. P. Sahaya and R. K. Nath, Al-doped ZnO thin films as methanol sensors, Sensors and Actuators B, Vol. 134, 2008, pp. 654-659.10.1016/j.snb.2008.06.006
  25. [25]A. Sedky, T. A. El-Brolossy and S. B. Mohamed, Correlation between sintering temperature and properties of ZnO ceramic varistors, Journal of Physics and Chemistry of Solids, Vol. 73,, 2012, pp. 505-510. A. M. El-Sayed, F. M. Ismail, M. H. Khder, M. E. M. Hassouna and S. M. Yakout, Effect of CeO2 Doping on the Structure, Electrical Conductivity and Ethanol Gas Sensing Properties of Nanocrystalline ZnO Sensors10.1016/j.jpcs.2011.11.035
  26. [26]A. Singh, Synthesis, characterization, electrical and sensing properties of ZnO nanoparticles, Advanced Powder Technology, Vol. 21, 2010, pp. 609-613.10.1016/j.apt.2010.02.002
  27. [27]D. Fangli, W. Ning, Z. Dongmei and S. Yingzhong, Preparation, characterization and infrared emissivity study of Ce-doped ZnO films, journal of rare earths, Vol. 28, No. 3, 2010, pp. 391-395.10.1016/S1002-0721(09)60118-6
  28. [28]C. G. Dighavkar, A. V. Patil, S. J. Patil and R. Y. Borse, Effect on Ethanol Gas Sensing Performance of Cu Addition to TiO2 Thick Films, Sensors & Transducers Journal, Vol. 116, 2010, pp. 28-37.
  29. [29]N. K. Pawar, D. D. Kajale, G. E. Patil, V. G. Wagh, V. B. Gaikwad, M. K. Deore and G. H. Jain, nanostructured Fe2O3 thick film as an ethanol sensor, International Journal on Smart Sensing and Intelligent Systems, Vol. 5, NO. 2, June 2012, pp. 441-457.10.21307/ijssis-2017-489
  30. [30]S. Matsushima, T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Role of additives on alcohol sensing by semiconductor gas sensor, Chem. Lett., Vol. 18, 1989, pp. 845-848.10.1246/cl.1989.845
  31. [31]M. Parmar and K. Rajanna, Copper (II) oxide thin film for methanol and ethanol sensing, International Journal on Smart Sensing and Intelligent Systems, Vol. 4, No. 4, 2011, pp. 710-725.10.21307/ijssis-2017-465
Language: English
Page range: 606 - 623
Accepted on: Aug 3, 2012
Published on: Sep 1, 2012
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2012 A. M. El-Sayed, F. M. Ismail, M. H. Khder, M. E. M. Hassouna, S. M. Yakout, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.