Have a personal or library account? Click to login

References

  1. Phillips M. Breath Tests in Medicine. Scientific American 1992;267(1):74-9.10.1038/scientificamerican0792-74
  2. Pauling L, Robinson AB, Teranish R, Cary P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proceedings of the National Academy of Sciences of the United States of America 1971;68(10):2374-&.10.1073/pnas.68.10.2374
  3. Gisbert JP. Breath test with C-13-urea for H. pylori infection diagnosis by means of mass spectrometry and infrared spectrophotometry. Salud I Ciencia 2006;15(1):461-3.
  4. Effros RM. Dilution of respiratory solutes in exhaled condensates - From the authors. American Journal of Respiratory and Critical Care Medicine 2003;167(5):802.10.1164/ajrccm.167.5.957
  5. Kharitonov SA, Chung KF, Evans D, OConnor BJ, Barnes PJ. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. American Journal of Respiratory and Critical Care Medicine 1996;153(6):1773-80.10.1164/ajrccm.153.6.8665033
  6. Phillips M, Greenberg J. Ion-Trap Detection of Volatile Organic-Compounds in Alveolar Breath. Clinical Chemistry 1992;38(1):60-5.10.1093/clinchem/38.1.60
  7. Groves WA, Zellers ET. Investigation of organic vapor losses to condensed water vapor in Tedlar(R) bags used for exhaled-breath sampling. American Industrial Hygiene Association Journal 1996;57(3):257-63.10.1080/15428119691014981
  8. Williams DE. Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B-Chemical 1999;57(1-3):1-16.10.1016/S0925-4005(99)00133-1
  9. Di Francesco F, Fuoco R, Trivella MG, Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchemical Journal 2005;79(1-2):405-10.10.1016/j.microc.2004.10.008
  10. Henderson MJ, Karger BA, Wrenshall GA. Acetone in the Breath - A Study of Acetone Exhalation in Diabetic and Nondiabetic Human Subjects. Diabetes 1952;1(3):188-&.10.2337/diab.1.3.18814936833
  11. Teshima N. Determination of acetone in breath. Analytica Chimica Acta 2005;535(1-2):189-99.10.1016/j.aca.2004.12.018
  12. Giardina M, Olesik SV. Application of low-temperature glassy carbon-coated macrofibers for solidphase microextraction analysis of simulated breath volatiles. Analytical Chemistry 2003;75(7):1604-14.10.1021/ac025984k12705592
  13. Rock F, Barsan N, Weimar U. Electronic nose: Current status and future trends. Chemical Reviews 2008;108(2):705-25.10.1021/cr068121q18205411
  14. Ghoos Y, Hiele M, Rutgeerts P, Vantrappen G. Porous-Layer Open-Tubular Gas-Chromatography in Combination with An Ion Trap Detector to Assess Volatile Metabolites in Human Breath. Biomedical and Environmental Mass Spectrometry 1989;18(8):613-6.10.1002/bms.12001808172804446
  15. Daughtrey EH, Oliver KD, Adams JR, Kronmiller KG, Lonneman WA, McClenny WA. A comparison of sampling and analysis methods for low-ppbC levels of volatile organic compounds in ambient air. Journal of Environmental Monitoring 2001;3(1):166-74.10.1039/b007158g11253013
  16. Mendis S, Sobotka PA, Euler DE. Pentane and Isoprene in Expired Air from Humans -Gas-Chromatographic Analysis of Single-Breath. Clinical Chemistry 1994;40(8):1485-8.10.1093/clinchem/40.8.1485
  17. Cao W. - Current status of methods and techniques for breath analysis. /20;- 37(-1):-13.10.1080/10408340600976499
  18. Dwivedi P, Wu P, Klopsch SJ, Puzon GJ, Xun L, Hill HH. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 2008;4(1):63-80.10.1007/s11306-007-0093-z
  19. Hansel A, Mark TD. Proton transfer reaction mass spectrometry - Foreword. International Journal of Mass Spectrometry 2004;239(2-3):VII-VIII.10.1016/j.ijms.2004.10.014
  20. Warneke C, De Gouw JA, Kuster WC, Goldan PD, Fall R. Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method. Environmental Science & Technology 2003;37(11):2494-501.10.1021/es026266i12831035
  21. Phillips M. Method for the collection and assay of volatile organic compounds in breath. Analytical Biochemistry 1997;247(2):272-8.10.1006/abio.1997.20699177688
  22. Solga SF, Risby TH. What is Normal Breath? Challenge and Opportunity. Ieee Sensors Journal 2010;10(1):7-9.10.1109/JSEN.2009.2035201
  23. Davis CE, Frank M, Mizaikoff B, Oser H. The Future of Sensors and Instrumentation for Human Breath Analysis. Ieee Sensors Journal 2010;10(1):3-6.10.1109/JSEN.2009.2035675
  24. Owen OE, Trapp VE, Skutches CL, Mozzoli MA, Hoeldtke RD, Boden G, et al. Acetone Metabolism During Diabetic-Ketoacidosis. Diabetes 1982;31(3):242-8.10.2337/diab.31.3.242
  25. Wang L, Teleki A, Pratsinis SE, Gouma PI. Ferroelectric WO3 nanoparticles for acetone selective detection. Chemistry of Materials 2008;20(15):4794-6.10.1021/cm800761e
  26. Woodward PM, Sleight AW, Vogt T. Ferroelectric tungsten trioxide. Journal of Solid State Chemistry 1997;131(1):9-17.10.1006/jssc.1997.7268
  27. Strobel R, Pratsinis SE. Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry 2007;17(45):4743-56.10.1039/b711652g
  28. Madler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, et al. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sensors and Actuators B-Chemical 2006;114(1):283-95.10.1016/j.snb.2005.05.014
  29. Deng CH, Zhang J, Yu XF, Zhang W, Zhang XM. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2004;810(2):269-75.10.1016/S1570-0232(04)00657-9
  30. Righettoni M, Tricoli A, Pratsinis SE. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Analytical Chemistry 2010;82(9):3581-7.10.1021/ac902695n20380475
  31. Akhtar MK, Pratsinis SE, Mastrangelo SVR. Dopants in Vapor-Phase Synthesis of Titania Powders. Journal of the American Ceramic Society 1992;75(12):3408-16.10.1111/j.1151-2916.1992.tb04442.x
  32. Tricoli A, Graf M, Pratsinis SE. Optimal doping for enhanced SnO2 sensitivity and thermal stability. Advanced Functional Materials 2008;18(13):1969-76.10.1002/adfm.200700784
  33. Wang XS, Sakai G, Shimanoe K, Miura N, Yamazoe N. Spin-coated thin films of SiO2-WO3 composites for detection of sub-ppm NO2. Sensors and Actuators B-Chemical 1997;45(2):141-6.10.1016/S0925-4005(97)00286-4
  34. Khadayate RS, Sali V, Patil PP. Acetone vapor sensing properties of screen printed WO3 thick films. Talanta 2007;72(3):1077-81.10.1016/j.talanta.2006.12.043
  35. Sahay PP. Zinc oxide thin film gas sensor for detection of acetone. Journal of Materials Science 2005;40(16):4383-5.10.1007/s10853-005-0738-0
  36. Ferrus L, Guenard H, Vardon G, Varene P. Respiratory Water-Loss. Respiration Physiology 1980;39(3):367-81.10.1016/0034-5687(80)90067-5
  37. Tricoli A, Righettoni M, Pratsinis SE. Minimal cross-sensitivity to humidity during ethanol detection by SnO2-TiO2 solid solutions. Nanotechnology 2009;20(31).10.1088/0957-4484/20/31/31550219597246
  38. Barsan N, Weimar U. Conduction model of metal oxide gas sensors. Journal of Electroceramics 2001;7(3):143-67.10.1023/A:1014405811371
  39. Seiyama T, Kato A, Fujiishi K, Nagatani M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry 1962;34(11):1502-&.10.1021/ac60191a001
  40. Comini E. Metal oxide nano-crystals for gas sensing. Analytica Chimica Acta 2006;568(1-2):28-40.10.1016/j.aca.2005.10.06917761243
  41. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001;291(5510):1947-9.10.1126/science.105812011239151
  42. Vlachos DS, Skafidas PD, Avaritsiotis JN. The Effect of Humidity on Tin-Oxide Thick-Film Gas Sensors in the Presence of Reducing and Combustible Gases. Sensors and Actuators B-Chemical 1995;25(1-3):491-4.10.1016/0925-4005(95)85105-4
  43. Skafidas PD, Vlachos DS, Avaritsiotis JN. Modeling and Simulation of Tin Oxide-Based Thick-Film Gas Sensors Using Monte-Carlo Techniques. Sensors and Actuators B-Chemical 1994;19(1-3):724-8.10.1016/0925-4005(93)01222-P
  44. Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors - A comprehensive review. Critical Reviews in Solid State and Materials Sciences 2004;29(3-4):111-88.10.1080/10408430490888977
  45. Zakrzewska K. Mixed oxides as gas sensors. Thin Solid Films 2001;391(2):229-38.10.1016/S0040-6090(01)00987-7
  46. Russell Binions HDAASDDLDEWaIPP. Zeolite-Modified Discriminating Gas Sensors. Journal of The Electrochemical Society; 2009.10.1149/1.3065436
  47. (47)Russell Binions* AASDDLIPP, David E.Williams. Discrimination Effects in Zeolite Modified Metal Oxide Semiconductor Gas Sensors. IEEE SENSORS; 2009.10.1109/ICSENS.2009.5398566
  48. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integrative Cancer Therapies 2006;5(1):30-9.10.1177/153473540528509616484712
  49. Johnson ATC, Khamis SM, Preti G, Kwak J, Gelperin A. DNA-Coated Nanosensors for Breath Analysis. Ieee Sensors Journal 2010;10(1):159-66.10.1109/JSEN.2009.2035670
  50. White J, Truesdell K, Williams LB, AtKisson MS, Kauer JS. Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase. Plos Biology 2008;6(1):30-6.10.1371/journal.pbio.0060009221154918215112
  51. Cui SX, Albrecht C, Kuhner F, Gaub HE. Weakly bound water molecules shorten single-stranded DNA. Journal of the American Chemical Society 2006;128(20):6636-9.10.1021/ja058229816704264
  52. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials 2003;2(5):338-42.10.1038/nmat877
  53. Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Letters 2005;5(9):1774-8.10.1021/nl051261f
  54. Jemal A, Siegel R, Xu JQ, Ward E. Cancer Statistics, 2010. Ca-A Cancer Journal for Clinicians 2010;60(5):277-300.10.3322/caac.20073
  55. Martin DR, Semelka RC. Health effects of ionising radiation from diagnostic CT (vol 367, pg 1712, 2006). Lancet 2006;368(9546):1494.
  56. Szulejko JE, McCulloch M, Jackson J, Mckee DL, Walker JC, Solouki T. Evidence for Cancer Biomarkers in Exhaled Breath. Ieee Sensors Journal 2010;10(1):185-210.10.1109/JSEN.2009.2035669
  57. Oneill HJ, Gordon SM, Oneill MH, Gibbons RD, Szidon JP. A Computerized Classification Technique for Screening for the Presence of Breath Biomarkers in Lung-Cancer. Clinical Chemistry 1988;34(8):1613-8.10.1093/clinchem/34.8.1613
  58. Kneepkens CMF, Lepage G, Roy CC. The Potential of the Hydrocarbon Breath Test As A Measure of Lipid-Peroxidation (Vol 17, Pg 127, 1994). Free Radical Biology and Medicine 1994;17(6):609.10.1016/0891-5849(94)90102-3
  59. Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 1999;353(9168):1930-3.10.1016/S0140-6736(98)07552-7
  60. (60)Kress-Rogers EEd. Handbook of Biosensors and Electronic Noses. Boca Raton, FL, USA : CRC Press, 1996.
  61. Ballantine DSWRMMSJRAJZETFGCWH. Acoustic Wave Sensors.San Diego, California: Academic Press; 1997.10.1016/B978-012077460-9/50003-4
  62. Brunink JAJ, DiNatale C, Bungaro F, Davide FAM, DAmico A, Paolesse R, et al. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Analytica Chimica Acta 1996;325(1-2):53-64.10.1016/0003-2670(96)00017-7
  63. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors & Bioelectronics 2003;18(10):1209-18.10.1016/S0956-5663(03)00086-1
  64. Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, et al. Detection of lung cancer by sensor array analyses of exhaled breath. American Journal of Respiratory and Critical Care Medicine 2005;171(11):1286-91.10.1164/rccm.200409-1184OC
  65. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions - A meta-analysis. Jama-Journal of the American Medical Association 2001;285(7):914-24.10.1001/jama.285.7.914
  66. Phillips M. Can the electronic nose really sniff out lung cancer? American Journal of Respiratory and Critical Care Medicine 2005;172(8):1060.10.1164/ajrccm.172.8.958
  67. Phillips M, Altorki N, Austin JHM, Cameron RB, Cataneo RN, Kloss R, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clinica Chimica Acta 2008;393(2):76-84.10.1016/j.cca.2008.02.021
  68. Steeghs MML, Cristescu SM, Munnik P, Zanen P, Harren FJM. An off-line breath sampling and analysis method suitable for large screening studies. Physiological Measurement 2007;28(5):503-14.10.1088/0967-3334/28/5/005
  69. Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C, Gastl GA, et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. International Journal of Mass Spectrometry 2007;265(1):49-59.10.1016/j.ijms.2007.05.012
  70. Chen X, Xu FJ, Wang Y, Pan YF, Lu DJ, Wang P, et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007;110(4):835-44.10.1002/cncr.22844
  71. Kalapos MP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochimica et Biophysica Acta-General Subjects 2003;1621(2):122-39.10.1016/S0304-4165(03)00051-5
  72. Ma W, Liu XY, Pawliszyn J. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration. Analytical and Bioanalytical Chemistry 2006;385(8):1398-408.10.1007/s00216-006-0595-y
  73. Tassopou CN, Barnett D, Fraser TR. Breath-Acetone and Blood-Sugar Measurements in Diabetes. Lancet 1969;1(7609):1282-&.10.1016/S0140-6736(69)92222-3
  74. Guo DM, Zhang D, Li NM, Zhang L, Yang JH. Diabetes Identification and Classification by Means of a Breath Analysis System. Medical Biometrics, Proceedings 2010;6165:52-63.10.1007/978-3-642-13923-9_6
  75. Batterman S, Metts T, Kalliokoski P. Diffusive uptake in passive and active adsorbent sampling using thermal desorption tubes. Journal of Environmental Monitoring 2002;4(6):870-8.10.1039/b204835c
  76. Spanel P, Rolfe P, Rajan B, Smith D. The selected ion flow tube (SIFT) - A novel technique for biological monitoring. Annals of Occupational Hygiene 1996;40(6):615-26.10.1016/S0003-4878(96)00028-2
  77. Hryniuk A, Ross BM. Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. International Journal of Mass Spectrometry 2009;285(1-2):26-30.10.1016/j.ijms.2009.02.027
  78. A.Greenberg andA.Cheung. Primer on Kidney Diseases.Philadelphia PA: Saunders; 2005.
  79. Manolis A. The Diagnostic Potential of Breath Analysis. Clinical Chemistry 1983;29(1):5-15.10.1093/clinchem/29.1.5
  80. Smith D, Spanel P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. International Reviews in Physical Chemistry 1996;15(1):231-71.10.1080/01442359609353183
  81. Davies S, Spanel P, Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney International 1997;52(1):223-8.10.1038/ki.1997.324
  82. Lin YJ, Guo HR, Chang YH, Kao MT, Wang HH, Hong RI. Application of the electronic nose for uremia diagnosis. Sensors and Actuators B-Chemical 2001;76(1-3):177-80.10.1016/S0925-4005(01)00625-6
  83. Guo DM, Zhang D, Li NM, Zhang L, Yang JH. A Novel Breath Analysis System Based on Electronic Olfaction. Ieee Transactions on Biomedical Engineering 2010;57(11):2753-63.10.1109/TBME.2010.205586420667805
  84. G Peng MHYYBSBRA-BAKUTaHH. Detection of lung, breast, colorectal and prostate cases from exhaled breath using a single array of nanosensors. 103 ed. 2010. p. 542-51.10.1038/sj.bjc.6605810293979320648015
  85. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotechnology 2009;4(10):669-73.10.1038/nnano.2009.23519809459
  86. Haick H. Chemical sensors based on molecularly modified metallic nanoparticles. Journal of Physics D-Applied Physics 2007;40(23):7173-86.10.1088/0022-3727/40/23/S01
Language: English
Page range: 401 - 440
Accepted on: May 8, 2012
Published on: Jun 1, 2012
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2012 Darryl Hill, Russell Binions, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.