Have a personal or library account? Click to login

Synthesis of SrTiO3 Nanopowder by Sol-Gel-Hydrothemal Method for Gas Sensing Application

Open Access
|Jun 2012

References

  1. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, “Shape control of CdSe nanocrystals”, Nature, Vol. 404, No. 6773, March 2000, pp. 59-61.
  2. M. Cardona, “Optical Properties and Band Structure of SrTiO3 and BaTiO3”, Physical Review, Vol. 140, No. 2A, 1965, pp. 651-655.10.1103/PhysRev.140.A651
  3. C. L. Jia, K. Urban, S. Hoffmann, R. J. Waser, “Microstructure of columnar-grained SrTiO3 and BaTiO3 thin films prepared by chemical solution deposition” Journal of Materials Research Vol. 13, No. 08, 1998, 2206-2217.10.1557/JMR.1998.0309
  4. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, “Room-temperature ferroelectricity in strained SrTiO3”, Nature, Vol. 430, No. 7001, August 2004, pp. 758-761.
  5. P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher, M. Dressel, “Synthesis and Characterization of Nanocrystalline SrTiO3” J. Am. Ceram. Soc. Vol. 89, No. 09, September 2006, pp. 2804-2811.10.1111/j.1551-2916.2006.01133.x
  6. Y. Hu, O.K. Tan, J.S. Pan, H. Huang, W. Cao, “The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor”, Sens. Actuators B, Vol. 108, No. 1-2, July 2005, pp. 244-249.10.1016/j.snb.2004.10.053
  7. T. Hara, T. Ishiguro, “Oxygen sensitivity of SrTiO3 thin film prepared using atomic layer deposition”, Sens. Actuators B, Vol. 136, No. 02, March 2009, pp. 489-493.10.1016/j.snb.2008.12.026
  8. S. Burnside, J.E. Moser, K. Brooks, M. Gratzel, D.J. Cahen, “Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering”, J. Phys. Chem. B, Vol. 103, No. 43 August 1999, pp. 9328-9332.10.1021/jp9913867
  9. L. Pellegrino, I. Pallecchi, D. Marre, E. Bellingeri, S. Siri, “Fabrication of submicron-scale SrTiO3-δ devices by an atomic force microscope” Appl. Phys. Lett. Vol. 81, No. 20, November 2002, pp. 3849-3851.10.1063/1.1521583
  10. M.L. Moreira, J. Andres, V.M. Longo, M.S. Li, J.A. Varela, E. Longo, “Photoluminescent behavior of SrZrO3/SrTiO3 multilayer thin films”, Chem. Phys. Lett. Vol. 473, No. 4-6, May 2009, pp. 293-298.10.1016/j.cplett.2009.03.021
  11. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, “Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts “, J. Phys. Chem. Vol. 90, No. 02, January 1986, pp. 292-295.10.1021/j100274a018
  12. M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential”, J. Am. Chem. Soc. Vol. 98, No. 10, May 1976, pp. 2774 -2779.10.1021/ja00426a017
  13. S. Burnside, J.E. Moser, K. Brooks, M.J. Gratzel, “Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices: Increasing Photovoltage through Flatband Potential Engineering”, Phys. Chem. B, Vol. 103, No. 43, August 1999 pp. 9328-9332.10.1021/jp9913867
  14. Rudiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R, “Nanosize ferroelectric oxides – tracking down the superparaelectric limit”, Appl. Phys A, Vol. 80, No. 06, March 2005, pp. 1247-1255.10.1007/s00339-004-3167-z
  15. Wu X, Wu D, Liu X, “Negative pressure effects in SrTiO3 nanoparticles investigated by Raman spectroscopy”, Solid State Comm., Vol. 145, No. 5-6, February 2008, pp. 255-258.10.1016/j.ssc.2007.11.018
  16. H. Tagawa, K. Igarashi, “Reaction of Strontium Carbonate with Anatase and Rutile” J. Am. Ceram. Soc. Vol. 69, No. 04, April 1986, pp.310-314.10.1111/j.1151-2916.1986.tb04737.x
  17. [17]V.A. Trepakov, M.E. Savinov, I. Okhay, A. Tkach, P.M. Vilarinho, A.L. Kholkin, I. α_l_ Gregora, L. Jastrabik, “Dielectric permittivity and Cr3+ impurity ion probe luminescence in SrTiO3 sol–gel ceramics”, J. Eur. Ceram. Soc. Vol. 27, No. 13-15, March 2007, pp. 3705-3707.10.1016/j.jeurceramsoc.2007.02.022
  18. G. Pfaff, “Sol–gel synthesis of strontium titanate powders of various compositions”, J. Mater. Chem. Vol.03, No. 07, July 1993, pp.721-724.10.1039/JM9930300721
  19. Q. Pang, J.X. Shi, M.L. Gong, “Photoluminescent Properties of SrTiO3: Pr, Al Nanophosphors Synthesized by Microemulsion–Microwave Heating” J. Am. Ceram. Soc. Vol. 90, No. 12, December 2007, pp. 3943-3946.10.1111/j.1551-2916.2007.01988.x
  20. P.K. Dutta, J.R. Gregg, “Hydrothermal synthesis of tetragonal barium titanate (BaTiO3)” Chem. Mater. Vol. 04, No. 04, July 1992, pp. 843-846.10.1021/cm00022a019
  21. M.-H. Um, H. Kumazawa, “Hydrothermal synthesis of ferroelectric barium and strontium titanate extremely fine particles”, J. Mater. Sci. Vol. 35, No. 05, March 2000, pp. 1295-1300.
  22. S.C. Zhang, J.X. Liu, Y.X. Han, B.C. Chen, X.G. Li, “Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions”, Mater. Sci. Eng. B, Vol. 110, No. 01, June 2004 pp. 11-17.10.1016/j.mseb.2004.01.017
  23. E.K. Nyutu, C.H. Chen, P.K. Dutta, S.L. Suib, “Effect of Microwave Frequency on Hydrothermal Synthesis of Nanocrystalline Tetragonal Barium Titanate” J. Phys. Chem. C, Vol. 112, No. 26, June 2008, pp. 9659-9667.10.1021/jp7112818
  24. E.R. Leite, C.M.G. Sousa, E. Longo, J.A. Varela, “Influence of polymerization on the synthesis of SrTiO3: Part II. Particle and agglomerate morphologies”, Ceram. Int., Vol. 21, No. 3, 1995, pp. 153-158.10.1016/0272-8842(95)90904-W
  25. S.M. Zanetti, E. Longo, J.A. Varela, E.R. Leite, “Microstructure and phase evolution of SrTiO3 thin films on Si prepared by the use of polymeric precursors”, Mater. Lett, Vol. 31, No. 3-6, June 1997, pp. 173-178.10.1016/S0167-577X(96)00267-4
  26. C.H. Chang, Y.H. Shen, “Synthesis and characterization of chromium doped SrTiO3 photocatalyst” Mater. Lett, Vol. 60, No. 01, January 2006, pp. 129-132.10.1016/j.matlet.2005.08.005
  27. H. Cui, M. Zayat, D. Levy, “Controlled homogeneity of the precursor gel in the synthesis of SrTiO3 nanoparticles by an epoxide assisted sol–gel route” J. Non-Cryst. Solids, Vol. 353, No. 11-12, May 2007, pp. 1011-1016.10.1016/j.jnoncrysol.2007.01.009
  28. Yoshimura M, “Importance of soft solution processing for advanced inorganic materials”, J Mater Res, Vol.-13, No. 04,: April1998, pp.796-802.10.1557/JMR.1998.0101
  29. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science Vol. 287, January 2000, pp. 622–625.10.1126/science.287.5453.622
  30. W. Gopel, K. Schierbaum, SnO2 sensors current status and future prospects, Sens. Actuators B, Vol. 26, No. 1-3, June 1995, pp. 1–12.10.1016/0925-4005(94)01546-T
  31. Y. Yamada, Y. Seno, Y. Masuoka, K. Yamashita, Nitrogen oxides sensing characteristics of Zn2SnO4 thin film, Sens. Actuators B, Vol. 49, No.3, July 1998, pp. 248–252.10.1016/S0925-4005(98)00135-X
  32. G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B, Vol. 107, No. 01, May 2005, pp. 209–232.10.1016/j.snb.2004.10.006
  33. G. Otulakowski, B.P. Kavanagh, Hydrogen sulfide in lung injury: therapeutic hope from a toxic gas? Anesthesiology, Vol. 113, No. 1, July 2010, pp. 4–6.10.1097/ALN.0b013e3181dec00e20574223
  34. D. Vuong, G. Sakai, K. Shimanoe, N. Yamazoe, Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size, Sens. Actuators B, Vol. 105, No. 2, March 2005, pp. 437–442.10.1016/j.snb.2004.06.034
  35. I. S. Hwang, J.K. Choi, S.J. Kim, K.Y. Dong, J.H. Kwon, B.K. Ju, J.H. Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sens. Actuators B, Vol. 142, No. 01, October 2009, pp. 105-110.10.1016/j.snb.2009.07.052
  36. J. Xu, X. Wang, J. Shen, Hydrothermal synthesis of In2O3 for detecting H2S in air, Sens. Actuators B, Vol. 115, No. 02, June 2006, pp. 642–646.10.1016/j.snb.2005.10.038
  37. G. H. Jain, V. B. Gaikwad and L. A. Patil, “Studies on gas sensing performance of (Ba0.8Sr0.2)(Sn0.8Ti0.2)O3 thick film resistors”, Sensors and Actuators B, Vol. 122, No. 02, March 2007, pp. 605-612.10.1016/j.snb.2006.07.011
  38. G. H. Jain, V. B. Gaikwad, D. D. Kajale, R. M. Chaudhari, R. L. Patil, N. K. Pawar and L. A. Patil, “Gas Sensing Performance of pure and modified Barium Strontium Titanate Thick Film Resistors”, Sensors and Transducers, Vol. 90, 2008, pp. 160-173
  39. P. Balaya, J. Jamnik, J. Fleig, J. Maier, “Mesoscopic electrical conduction in nanocrystalline SrTiO3”Appl. Phys. Lett. Vol. 88, No. 6, February 2006, article no. 062109 (3 pages).10.1063/1.2171798
  40. F.M. Pontes, E. Longo, E.R. Leite, E.J.H. Lee, J.A. Varela, P.S. Pizani, “Photoluminescence at room temperature in amorphous SrTiO3 thin films obtained by chemical solution deposition”, Mater. Chem. Phys. Vol. 77, No. 02, January 2002, pp. 598–602.10.1016/S0254-0584(02)00112-8
  41. C.D. Pinheiro, E. Longo, E.R. Leite, F.M. Pontes, R.Magnani, J.A. Varela, The role of defect states in the creation of photoluminescence in SrTiO3, Appl. Phys. A, Vol. 77, No. 1, 2003, pp. 81–85.10.1007/s00339-002-1916-4
  42. W.F. Zhang, Z. Yin, M.S. Zhang, Study of photoluminescence and electronic states in nanophase strontium titanate, Appl. Phys. A, Vol. 70, No. 01, 2000, pp. 93–96.10.1007/s003390050018
  43. Y.S. Kim, S.C. Ha, K. Kim, H. Yang, J.T. Park, C.H. Lee, J. Choi, J. Paek, K. Lee, Room temperature semiconductor gas sensor based on non-stoichiometric tungsten oxide nanorod film, Appl. Phys. Lett. Vol. 86, No. 21, May 2005, article no. 213105(3pages).10.1063/1.1929872
  44. N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuators B, Vol. 5, 1991, pp.7–19.10.1016/0925-4005(91)80213-4
  45. Z. Gergintschew, H. Förster, J. Kositza, D. Schipanski, Two-dimensional numerical simulation of semiconductor gas sensors, Sens. Actuators B, Vol. 26, 1995, pp.170– 173.10.1016/0925-4005(94)01580-B
  46. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catal. Surv. Asia Vol. 7 2003, pp. 63–75.
  47. T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas sensor applications, Appl. Phys. A, Vol. 80, 2005, pp.1451–1454.10.1007/s00339-004-3075-2
  48. N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surf. Sci., Vol. 86, 1979, pp. 335–344.10.1016/0039-6028(79)90411-4
  49. M. Egashira, Y. Shimizu, Y. Takao, S. Sako, Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases, Sens. Actuators B, Vol.35, 1996, pp.62–67.10.1016/S0925-4005(96)02015-1
  50. J.Q. Xu, X.H. Jia, X.D. Lou, J.N. Shen, One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles, Solid State Electron. Vol. 50, No. 3, 2006, pp. 504–507.10.1016/j.sse.2006.02.001
  51. A. Rothschild and Y. Komen, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors” J. Appl. Phys. Vol. 95, No. 11, 2004, pp. 6374-6380.10.1063/1.1728314
  52. H. Windichamann and P. Mark, “A Model for the Operation of a Thin-Film SnOx Conductance-Modulation Carbon Monoxide Sensor”, J. Electrochem. Soc. Vol. 126, No. 4, 1979, pp.627-633.10.1149/1.2129098
  53. J Mizsei, How can sensitive and selective semiconductor gas sensors be made? Sensors and Actuators B, Vol. 23, No. 2-3, February 1995, pp. 173-17610.1016/0925-4005(94)01269-N
Language: English
Page range: 382 - 400
Accepted on: May 10, 2012
Published on: Jun 1, 2012
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2012 D. D. Kajale, G. E. Patil, V. B. Gaikwad, S. D. Shinde, D. N. Chavan, N. K. Pawar, S. R. Shirsath, G. H. Jain, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.