[1]T. C. Kietzmann, S. Lange and M. Riedmiller, “Computational Object Recognition: A Biologically Motivated Approach”, Biological Cybernetics, vol. 100, pp. 59-79, 2009.10.1007/s00422-008-0281-619089445
[2]T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust Object Recognition with Cortex-Like Mechanisms”, IEEE Trans. Pattern Analysis Machine Intelligence, vol. 29, no. 3, pp. 411-426, 2007.10.1109/TPAMI.2007.5617224612
[3]E. Meyers and L. Wolf, “Using Biologically Inspired Features for Face Processing”, Int. Journal of Computer Vision, vol. 76, pp. 93-104, 2008.10.1007/s11263-007-0058-8
[4]D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, “Attentional Selection for Object Recognition – a Gentle Way”, Biologically Motivated Computer Vision, Lecture Notes in Computer Science, Springer, vol. 2525, pp. 472-479, 2002.
[5]S. Frintrop, and P. Jensfelt, “Attentional Landmarks and Active Gaze Control for Visual SLAM”, IEEE Trans. Robotics, vol. 24, no. 5, pp. 1054-1065, 2008.
[6]S. Frintrop, E. Rome, and H. Christensen, “Computational Visual Attention Systems and their Cognitive Foundations: A Survey”, ACM Trans. Applied Perception, vol. 7, no. 11, pp. 1-46, 2010.10.1145/1658349.1658355
[7]C. Siagian, and L. Itti, “Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 300- 312, 2007.10.1109/TPAMI.2007.4017170482
[9]B. Rasolzadeh, M. Björkman, K. Huebner and D. Kragic, “An Active Vision System for Detecting, Fixating and Manipulating Objects in the Real World”, Int. Journal of Robotics Research, vol. 29, issue 2-3, pp. 133-154, 2010.10.1177/0278364909346069
[10]A. M. Rotenstein, A. Andreopoulos, E. Fazl, D. Jacob, M. Robinson, K. Shubina, Y. Zhu, and J. K. Tsotsos, “Towards the Dream of an Intelligent, Visually-Guided Wheelchair”, Proc. Int. Conf. Technology and Aging, Toronto, Canada, 2007.
[11]N. Xiong, J. He, J. H. Park, D. Cooley, and Y. Li, “A Neural Network Based Vehicle Classification System for Pervasive Smart Road Security”, Universal Computer Science, vol. 15, pp. 1119-1142, 2009.
[12]D. Ponsa, and A. Lopez, “Cascade of Classifiers for Vehicle Detection”, J. Blanc-Talon et al. (Eds.): ACIVS 2007, Lecture Notes in Computer Science, LNCS 4678, pp. 980–989, 2007.10.1007/978-3-540-74607-2_89
[13]P. Ji, L. Jin, and X. Li, “Vision-based Vehicle Type Classification Using Partial Gabor Filter Bank”, Proc. IEEE Int. Conf. Automation and Logistics, Jinan, China, pp. 1037-1040, 2007.
[14]F. M. Kazemi, H. R. Pourreza, R. Moravejian and E. M. Kazemi, “Vehicle Recognition Using Curvelet Transform and Thresholding”, T. Sobh (Ed.): Advances in Computer and Information Sciences and Engineering, Springer, pp. 142–146, 2008.10.1007/978-1-4020-8741-7_26
[15]X. Ma, W. Eric, and L. Grimson, “Edge-based rich representation for vehicle classification”, Proc. Int. Conf. Computer Vision, vol. 2, pp. 1185- 1192, 2005.
[16]H. J. Lee, “Neural Network Approach to Identify Model of Vehicles”, J. Wang et al. (Eds.): ISNN 2006, Lecture Notes in Computer Science, vol. 3973, Springer, pp. 66–72, 2006.
[17]T. Yoshida, S. Mohottala, M. Kagesawa and K. Ikeuchi, “Vehicle Classification System with Local-Feature Based Algorithm Using CG Model Images”, IEICE Trans., vol. E00A, no. 12, pp. 1-8, 2002.
[19]V.S. Petrovic, and T.F. Cootes, “Analysis of Features for Rigid Structure Vehicle Type Recognition”, Proc. British Machine Vision Conf., Kingston, 2004, pp. 587-596.10.5244/C.18.61
[20]P. Dalka, and A. Czyzewski, “Vehicle Classification Based on Soft Computing Algorithms”, M. Szczuka et al. (Eds.): RSCTC 2010, Lecture Notes in Artificial Intelligence, vol. 6086, Springer, pp. 70–79, 2010.
[21]X. Clady, P. Negri, M. Milgram, and R. Poulenard, “Multi-class Vehicle Type Recognition System”, L. Prevost, S. Marinai, and F. Schwenker (Eds.): ANNPR 2008, Lecture Notes in Artificial Intelligence, vol. 5064, Springer, pp. 228–239, 2008.
[22]L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis”, IEEE Trans. Pattern Analysis Machine Intelligence, vol. 20, no. 11, pp. 1254– 1259, 1998.