Have a personal or library account? Click to login
Nanosensors Engineering: Ii. Superficial Functionalization Of Sno2 Nanowire For Sensing Performance Improvement Cover

Nanosensors Engineering: Ii. Superficial Functionalization Of Sno2 Nanowire For Sensing Performance Improvement

Open Access
|Dec 2017

References

  1. M. Law, H. Kind, B. Messer, F. Kim, and P.D. Yang, Photochemical Sensing of NO2 with Sno2 Nanoribbon Nanosensors at Room Temperature, Angewandte Chemie-International Edition, 41, Issue 13, 2405–2408 (2002)
  2. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, and Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Applied Physics Letters, 81, Issue 10, 1869-1871 (2002)
  3. C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, and C.W. Zhou, In2O3 nanowires as chemical sensors, Applied Physics Letters, 82, Issue 10, 1613 (2003)10.1063/1.1559438
  4. A. Kolmakov, Y.X. Zhang, G.S. Cheng, and M. Moskovits, Detection of CO and O2 Using Tin Oxide Nanowire Sensors, Advanced Materials, 15, 997 (2003)10.1002/adma.200304889
  5. A Maiti, J Rodriguez, M Law, P Kung, J McKinney, P Yang, Sno2 Nanoribons as NO2 Sensors, Nano Letters, 3, 1025-1028 (2003)10.1021/nl034235v
  6. D. J. Zhang, C. Li, X. L. Liu, et al., Doping dependent NH3 sensing of indium oxide nanowires, Applied Physics Letters, 83, 1845 (2003)10.1063/1.1604194
  7. Y. Zhang, A. Kolmakov, S. Chretien, et al., Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it, Nano Letters, 4, 403 (2004)10.1021/nl034968f
  8. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Enhanced Gas Sensing by Individual Sno2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles, Nano Letters, 5, 667 (2005)10.1021/nl050082v
  9. 9.M. Curreli, C. Li, Y. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C. Zhou, Selective Functionalization of In2O3 Nanowire Mat Devices for Bio-sensing Applications, Journal of the American Chemical Society, 127, 6922–6923 (2005)
  10. A. Alejandre, F. Medina, P. Salagre, A. Fabregat, J.E. Sueiras, Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions, Applied Catalysis B-Environmental, 18, 307-315 (1998)
  11. K. M. Dooley, S. Y. Chen, J. R. H. Ross, Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane, J. Catal., 145, 402-408 (1994).
  12. R. X. Dingsheng Wang, Xun Wang and Yadong Li, NiO nanorings and their unexpected catalytic property for CO oxidation Nanotechnology, 17, 979–983 (2006)10.1088/0957-4484/17/4/023
  13. R. H. Kodama, S. A. Makhlouf, A. E. Berkowitz, Finite Size Effects in Antiferromagnetic NiO Nanoparticles, Physical Review Letters, 79, 1393 (1997)10.1103/PhysRevLett.79.1393
  14. T. M. H. Sato, S. Takata and T. Yamada, Transparent Conducting P-Type NiOx Thin Films Prepared by Magnetron Sputtering, Thin Solid Films, 236, 27-31 (1993)
  15. K. Yoshimura, T. Miki, and S. Tanemura, Nickel Oxide Electrochromic Thin Films Prepared by Reactive DC Magnetron Sputtering, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 34, 2440 (1995)10.1143/JJAP.34.2440
  16. 16.T. P. A.Neubecker, T. Doll, W. Hansch and I. Eisele, Ozone-enhanced molecular beam deposition of nickel oxide (NiO) for sensor applications, Thin Solid Films 310, 19-23 (1997)
  17. J. H. I. Hotový, L. Spiess, R. Capkovic and S. Hascík, Preparation and characterization of NiO thin films for gas sensor applications,.Vacuum, 58, 300 (2000)10.1016/S0042-207X(00)00182-2
  18. M. Matsumiya, F. Qiu, W. Shin, N. Izu, N. Murayama, S. Kanzaki, Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor, Thin Solid Films, 419, 213 (2002)10.1016/S0040-6090(02)00762-9
  19. V. R. I. Hotovy, P. Siciliano, S. Capone, L. Spiess, Sensing characteristics of NiO thin films as NO2 gas sensor, Thin Solid Films, 418, 9 (2002)10.1016/S0040-6090(02)00579-5
  20. R. C. P. Hidalgo, A.Coelho, and D. Gouvêa, Surface segregation and consequent SO2 sensor response in Sno2-NiO, Chemistry of Materials, 17, 4149 (2005)10.1021/cm049020g
  21. D.F.Cox, T.B. Fryberger, S. Semancik. Oxygen vacancies and defect electronic states on the Sno2 (110)-1x1 surface, Physical Review B, 38, 2072-2083 (1988)
  22. C.G.Founstadt, R.H.Rediker, Electrical Properties of High-Quality Stannic Oxide Crystals, J.Appl. Phys, 42, 2911-2918 (1971)
  23. 23.Z.R. Dai, Z.W. Pan, and Z.L. Wang, Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Advanced Functional Materials, 13, 9, (2003)10.1002/adfm.200390013
  24. McCarthy and J.Welton, Powder Diffraction, 4, 156 (1989)10.1017/S0885715600016638
  25. M. N. Rumyantseva, O. V. Safonova, M. N. Boulova, L. I. Ryabova, A. M. Gas’kov, Russian Chemical Bulletin, International Edition, Vol. 52, No. 6, pp. 1217—1238 (2003)
  26. B. Monnerat, L. Kiwi-Minsker, A. Renken, Mathematical modelling of the unsteady-state oxidation of nickel gauze catalysts, Chemical Engineering Science, 58, 4911–4919 (2003)
  27. S. V.Kumari, M. Natarajan, V. K. Vaidyan, P. Koshy Surface oxidation of nickel thin films, Journal of Materials Science Letters, 11, Iss.11, 761-762 (1992)
  28. A.M. Mebel, D.-Y. Hwang, Theoretical Study on the Reaction Mechanism of Nickel Atoms with Carbon Dioxide, J. Phys. Chem. A, 104 (49), pp 11622–11627, (2000)10.1021/jp002402z
  29. J.A. Rodrigez, J.C.Hanson, A. I. Frenkel J.Y.Kim, M.Perez, Experimental and Theoretical Studies on the Reaction of H2 with NiO: Role of O Vacancies and Mechanism of Oxide Reduction, J.Am. Chem. Soc., 124, No.2, 346-354 (2002)
  30. P.K. de Bokx, F. Labohm, O.L.J. Gijzeman, G.A. Bootsma, J.W. Geus, The Interaction of Oxygen with Ni(100) and the Reduction of the Surface Oxide by Hydrogen, Appl. Surf. Sci., 5, 321—331, (1980)10.1016/0378-5963(80)90070-7
Language: English
Page range: 807 - 819
Published on: Dec 13, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Serghei Dmitriev, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.