Have a personal or library account? Click to login
Study Of Superhydrophilic Nanoparticle-Based Ultra-Thin Films Towards The Development Of Optical Fiber Humidity Sensors Cover

Study Of Superhydrophilic Nanoparticle-Based Ultra-Thin Films Towards The Development Of Optical Fiber Humidity Sensors

Open Access
|Nov 2017

References

  1. J. Bico, U. Thiele and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, pp. 41-46, 2002.10.1016/S0927-7757(02)00061-4
  2. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem, vol. 28, pp. 7426-7431, 1936.
  3. A. Nakajima, “Design of a transparent hydrophobic coating,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol. 112, pp. 533-540, 2004.10.2109/jcersj.112.533
  4. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi and A. Fujishima, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir, vol. 16, pp. 7044-7047, 2000.
  5. N. A. Patankar, “Mimicking the lotus effect: Influence of double roughness structures and slender pillars,” Langmuir, vol. 20, pp. 8209-8213, 2004.
  6. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, vol. 23, pp. 7293-7298, 2007.
  7. F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings,” Langmuir, vol. 22, pp. 2856-2862, 2006.
  8. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, “Light-induced amphiphilic surfaces [4],” Nature, vol. 388, pp. 431-432, 1997.10.1038/41233
  9. K. Guan, B. Lu and Y. Yin, “Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films,” Surface and Coatings Technology, vol. 173, pp. 219-223, 2003.10.1016/S0257-8972(03)00521-8
  10. R. -. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 Thin Films,” Journal of Physical Chemistry B, vol. 105, pp. 1984-1990, 2001.
  11. T. Soeno, K. Inokuchi and S. Shiratori, “Ultra-water-repellent surface: Fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films,” Applied Surface Science, vol. 237, pp. 543-547, 2004.10.1016/S0169-4332(04)00986-9
  12. Y. Lvov, K. Ariga, M. Onda, I. Ichinose and T. Kunitake, “Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions,” Langmuir, vol. 13, pp. 6195-6202, 1997.
  13. R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci., vol. 21, pp. 569594, 1966.
  14. G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science, vol. 277, pp. 1232-1237, 1997.
  15. G. V. Franks, “Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction,” Journal of Colloid and Interface Science, vol. 249, pp. 44-51, 2002.10.1006/jcis.2002.825016290567
  16. J. Choi and M. F. Rubner, “Selective adsorption of amphiphilic block copolymers on weak polyelectrolyte multilayers,” Journal of Macromolecular Science - Pure and Applied Chemistry, vol. 38 A, pp. 1191-1206, 2001.
  17. S. S. Shiratori and M. F. Rubner, “pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes,” Macromolecules, vol. 33, pp. 4213-4219, 2000.
  18. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir, vol. 16, pp. 5754-5760, 2000.
  19. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Transactions of the Faraday Society, vol. 40, pp. 546-551, 1944.10.1039/tf9444000546
  20. F. J. Arregui, I. R. Matias, Y. Liu, K. M. Lenahan and R. O. Claus, “Optical fiber nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process,” Optics Letters, vol. 24, pp. 596-598, 1999.10.1364/OL.24.00059618073794
  21. J. M. Corres, I. R. Matías, J. M. Hernáez, J. Bravo and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE Sensors J, vol. 8, pp. 281-285, 2008.10.1109/JSEN.2008.917487
  22. I. D. Villar, I. R. Matías, F. J. Arregui and R. O. Claus, “Fiber-optic hydrogen peroxide nanosensor,” IEEE Sensors Journal, vol. 5, pp. 365-370, 2005.10.1109/JSEN.2005.846182
  23. J. M. Corres, F. J. Arregui and I. R. Matías, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors and Actuators, B: Chemical, vol. 122, pp. 442-449, 2007.10.1016/j.snb.2006.06.008
  24. F. J. Arregui, “Optical fiber humidity sensor with a fast response time using the ionic selfassembly method,” IEICE Transactions on Electronics, vol. E83-C, pp. 360-364, 2000.
  25. Javier Goicoechea, Francisco J. Arregui, Jesus M. Corres, and Ignacio R. Matias, “Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications,” Journal of Sensors, vol. 2008, Article ID 142854, 7 pages, 2008.
  26. F. J. Arregui, I. R. Matias, J. Goicoechea, I. Del Villar, “Optical Fiber Sensors Based on Nanostructured Coatings” in Sensors Based on Nanostructured Materials, F. J. Arregui, Ed. New York: Springer, 2009, pp. 275-302.10.1007/978-0-387-77753-5_9
Language: English
Page range: 63 - 74
Published on: Nov 2, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Miguel Hernaez, Ignacio R. Matias, Jesus M. Corres, Javier Goicoechea, Javier Bravo, Francisco J. Arregui, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.