References
- [1]Rose. J. L., Ultrasonic Waves in Solid Media, First edition, Cambridge University Press, 1999, pp. 101,
- [2]Kim-Ho Ip, Yiu-Wing Mai, Delamination detection in smart composite beams using Lamb waves. Smart Mat. & Str 2004; 13: 544-551.
- [3]Pandey A. K, Biswas. M, and Samman M. M, Damage detection from changes in curvature mode shapes. J. of Sound and Vibration 1991; 145(2): 321-332
- [4]Yao G. C, Chang. K. C and Lee. G. C, Damage diagnosis of steel frames using vibrational signature analysis. J. of Engineering Mechanics 1992; 118(9): 153-170
- [5]Shi. Z. Y, Law S. S and Zhang L. M, Structural damage localization from modal strain energy change, J. of Sound and Vibration 1998; 218(5): 825-844
- [6]Cornwell. P, Doebling. S. W and Farrar. C. R, Application of the Strain energy damage detection method to plate like structures, J. of Sound and Vibration 1999; 224(2): 359-374
- [7]Maeck. J and Roeck. G. D.E, Dynamic Bending and Torsion Stiffness Derivation from Modal Curvatures and Torsion Rate. J. of Sound and Vibration 1999; 255(1): 153-170.
- [8]Su. Z and Ye. L, Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Elsevier J. of Compos Struct 2004; 66: 627-637
- [9]Kesavan. A, Deivasigamani. M, John. S, Herszberg. I, (2006), Damage detection in T – joint composite structures, Elsevier J. of Compos Struct 2004; (75): 313 – 320.
- [10]Kudva, J, Munir. N, and P. Tan, Damage Detection in Smart Structures Using Neural Networks and Finite Element Analysis. Proc. of ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures 1991, 559–562.
- [11]Wu, X, Ghaboussi. J, and Garrett. J. H, Use of Neural Networks in Detection of Structural Damage. Computers and Structures 1992; 42(4): 649–659.
- [12]Haykin. S, Neural Networks: A comprehensive foundation, Second edition, Pearson Prentice Hall publications. pp – 183-197.
- [13]Demuth. H and Beale. M, Neural Network Toolbox User’s Guide Version 4, For Use with MATLAB. pp - 5.2-5.73.