Have a personal or library account? Click to login

Impedance Behaviour of a Microporous PMMA-Film ‘Coated Constant Phase Element’ based Chemical Sensor

Open Access
|Nov 2017

References

  1. [1]A. Ur, D. F. Brown, Impedance monitoring of bacterial activity, Journal of Medical Microbiology 8 (1975) 19–27.
  2. [2]R. Gomej-Sjorberg, D. T. Morisette, R. Bashir, Impedance microbiology-on-a-chip: Microfluidic bioprocessor for rapid detection of bacterial metabolism, Journal of Microelectromechanical Systems 14 (4) (2005) 829–838.
  3. [3]R. Gomej-Sjorberg, R. Bashir, A. Bhunia, Microscale electronic detection of bacterial metabolism, Sensors and Actuators B: Chemical 86 (2-3) (2002) 198–208.
  4. [4]A. Andresscu, O. A. Sadik, Trends and challenges in biochemical sensors for clinical and environmental monitoring, Pure and Applied Chemistry 76 (2004) 861–878.
  5. [5]J. R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, John Wiley and sons, 1987.
  6. [6]P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behavior, Journal of Electroanalytical Chemistry 443 (1998) 149–154.
  7. [7]M. Itagaki, A. Taya, K. Watanabe, K. Noda, Deviation of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode, The Japan Society of Analytical Chemistry 18 (2002) 641–644.
  8. [8]K. Biswas, S. Sen, P. K. Dutta, Realization of a constant phase element and its performance study in a differentiator circuit, IEEE Transactions of Circuits and Systems-II 53 (2006) 802–806.
  9. [9]K. B. Oldham, Semintegral electroanalysis: Analog implementation, Analytical Chemistry 45 (1) (1973) 39 – 47.
  10. [10]A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Kluwer Aca- demic/Plenum Publishers, New York, 1999.
  11. [11]J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, E. C. Pereira, Doubling exponent models for the analysis of porous film electrodes by impedance: Relaxation of tio2 nanoporous in aqueous solution, Journal of Physical Chemistry 104 (2000) 2287–2298.
  12. [12]S. C. D. Roy, On the realization of a constant-argument immitance or fractional operator, IEEE Transaction on Circuit Theory CT-14 (1967) 264–274.
  13. [13]G. E. Carlson, C. A. Halijak, Approximation of fractional capacitors (1/s)1/n by a regular newton process, IEEE Transaction on Circuit Theory (1964) 210–213.
  14. [14]A. Oustaloup, F. Levron, B. Mathieu, F. M. Nanot, Frequency-band complex noninteger differentiator: Characterization and synthesis, IEEE Transactions on Circuit and Systems 47 (1) (2000) 25–39.
  15. [15]B. Mathieu, P. Melchior, A. Oustaloup, C. Ceryal, Fractional differentiation for edge detection, Signal Processing 83 (2003) 2421–2432.
  16. [16]O. P. Agrawal, Application of fractional derivatives in thermal analysis of disk brakes, Nonlinear Dynamics 38 (1-4) (2004) 191–206.
  17. [17]I. Podlubny, Fractional-order systems and Piλdμ controllers, IEEE Transaction on Automatic Control 44 (1) (1999) 208–214.
  18. [18]M. F. Silva, J. A. T. Machado, A. M. Lopes, Fractional order control of a hexapod robot, Nonlinear Dynamics 38 (1-4) (2004) 417–433.
  19. [19]H. Zhao, J. Yu, A simple and efficient design of variable fractional delay fir filters, IEEE Transactions on Circuit and Systems-II 53 (2) (2006) 157– 160.
  20. [20]M. D. Ortigueira, A. Guimaraes, A fractional linear view of the fractional brownian motion, Nonlinear Dynamics 38 (1-4) (2004) 295–303.
  21. [21]K. Biswas, S. Sen, P. K. Dutta, A constant phase element sensor for monitoring microbial growth, Sensors and Actuators B: Chemical 119 (2006) 186–191.
  22. [22]G. Garcia-Belmonte, Effect of electrode morphology on the diffusion length of the doping process of electronically conducting polypyrole films, Electrochemistry Communication 5 (2003) 236–240.
  23. [23]L. Thomas, Study and modelling of impedance characteristics of pmma-coated electrode in polarizable medium, Master’s thesis, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur (May 2006).
  24. [24]K. Biswas, Studies on design, development and performance analysis of capacitive type sensors, Ph.D. thesis, Indian Institute of Technology Kharagpur, India, Department of Electrical Engineering (February 2007).
  25. [25]D. Wobschall, Circuit Design for Electronic Instrumentation, McGraw-Hill, USA, 1979.
  26. [26]J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, L. O. S. Bulhoes, Impedance of constant phase element cpe-blocked diffusion in film electrodes, Journal of Electroana- lytical Chemistry 452 (1998) 229–234.
  27. [27]J. Bisquert, A. Compte, Theory of electrochemical impedance of anamolous diffusion, Journal of Electroanalytical Chemistry 499 (2001) 112–120.
  28. [28]J. Bisquert, Theory of the impedance of electron diffusion and recombination in a thin layer, Journal of Physical Chemistry 106 (2002) 325–333.
  29. [29]D. G. Pijanowska, M. Dawgul, W. Torbicz, Comparison of urea determination in biological samples by enfets based on ph and pnh4 detection, Sensors 3 (2003) 160–165.
  30. [30]J. Ross Macdonald and Solarton Group Limited, LEVMW, version 8.07; August, 2005, Immittance, Inversion, and simulation Fitting Programs for Windows and MS-DOS.
  31. [31]R.-H. Horng, P. Han, H.-Y. Chen, K.-W. Lin, T.-M. Tsai, J.-M. Zen, PMMA-based capillary electrophoresis electrochemical detection microchip fabrication, Journal of Micromechanics and Microengineering 15 (2005) 6–10.
Language: English
Page range: 922 - 939
Published on: Nov 2, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Karabi Biswas, Litty Thomas, Sourabh Chowdhury, Basudam Adhikari, Siddhartha Sen, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.