Have a personal or library account? Click to login
Nanorobot Movement: Challenges and Biologically inspired solutions Cover
By: N. N. Sharma and  R.K. Mittal  
Open Access
|Dec 2017

References

  1. [1]A.A.G. Requicha, “Nanorobots, NEMS and Nanoassembly”, Proceedings IEEE, Vol. 91, no. 11, pp 1922-1933 (2003).10.1109/JPROC.2003.818333
  2. [2]J. A. Stroscio and D. M. Eigler, “Atomic and molecular manipulation with the scanning tunneling microscope,” Science, vol. 254, no. 5036, pp. 1319–1326, (1991).10.1126/science.254.5036.131917773601
  3. [3]R. A. Freitas Jr., “Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell”; Artificial Cells, Blood Design, and Immobility, Biotech., vol. 26, pp 441-430 (1998).
  4. [4]B. Behkam and M. Sitti, “Towards Hybrid Swimming Microrobots: Bacteria Assisted Propulsion of Polystyrene Beads”, in Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006, pp 2421-2424 (2006).
  5. [5]A. Cavalcanti and R. A. Freitas Jr., “Nanorobotics Control Design: A Collective Behavior Approach for Medicine”, IEEE Tr. Nanobioscience, vol. 4, no. 2, pp 133-140, (2005).
  6. [6]M. Sitti, “Micro- and Nano-Scale Robotics”, Proceedings of the 2004 American Control Conference, Massachusetts, June 30 -July 2, 2004, pp 1-8 (2004).10.23919/ACC.2004.1383571
  7. [7]M. Siegel, “Smart Sensors and Small Robots”, Proceedings. IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, May 21-23, 2001 pp 303-308 (2001).
  8. [8]T. Fukuda, F. Arai and L. Dong, “Assembly of Nanodevices with Carbon Nanotubes through Nanorobotic Manipulations”, Proceedings IEEE, vol. 91, No. 11, 2003, pp 1803-1818 (2003).10.1109/JPROC.2003.818334
  9. [9]Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, “Directional Control in Thermally Driven Single-Molecule Nanocars”, Nano Lett., vol. 5, 2330-2334, (2005).10.1021/nl051915k16277478
  10. [10]T.R. Kelly, H. De Silva and R.A. Silva, “Unidirectional Rotary Motion in a MolecularSystem”, Nature (London), vol. 401, Issue 6749, pp 150-152, (1999).10.1038/4363910490021
  11. [11]N. Koumura, R.W. Zijlstra, R.A. van Delden, N Harada and B.L. Feringa, “Light-Driven Monodirectional Molecular Motor”, Nature, vol. 401, 1999, pp 152-155 (1999).10.1038/4364610490022
  12. [12]T. Harada and K. Yoshikawa, “Mode Switching of an Optical Motor”, Appl. Phy. Lett., vol. 81, 4850-4852, (2002).10.1063/1.1527235
  13. [13]R.K. Soong, George D. Bachand, Hercules P. Neves, Anatoli G. Olkhovets, Harold G. Craighead and Carlo D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor”, Science, vol. 290, no. 5496, 1555-1558, (2000).10.1126/science.290.5496.155511090349
  14. [14]R. Dreyfus, J. Baury, M.L. Roper, M.Fermigiev, H.A. Stone and J, Bibette, “Microscopic artificial swimmers”, Nature, vol. 437, 862, (2005).10.1038/nature0409016208366
  15. [15]Chih-Ming Ho, “Fluidics- The Link between Micro and Nano Sciences and Technologies”, 0-7803-5998-4/01@ 2001 IEEE, pp 375-384, (2001).
  16. [16]M. Nosonovsky and B. Bhushan, “Scale Effect in Friction during Multiple Asperity Contact,” ASME J. Tribol. Vol. 127, pp 37-46, (2005).10.1115/1.1829722
  17. [17]N.N. Sharma, “Modeling and Simulation of Brownian motion attributable to Thermal Agitation for Predicting Dynamics of Nanorobots”, Ph.D. Thesis, BITS, Pilani, India (2004).
  18. [18]A. Cavalcanti T. H. Bijan, S. Hwee and C. Liaw, “Nanorobot Communication Techniques: A Comprehensive Tutorial”, IEEE ICARCV 2006 International Conference on Control, Automation, Robotics and Vision, (2006).
  19. [19]A. S. G. Curtis, Comment on “Nanorobotics Control Design: A Collective Behavior Approach for Medicine” IEEE Tr. On Nanobioscience, vol. 4, no. 2, pp 201-202, (2005).
  20. [20]E. Gauger and H. Stark, “Numerical study of a microscopic artificial swimmer”, Phy. Rev. E, vol. 74, pp 021907 (1-10), (2006).10.1103/PhysRevE.74.02190717025472
  21. [21]E.M. Purcell, “Life at low Reynolds Number”, Am. Journal of Physics, vol. 45, no. 1, pp 3-11, (1977).10.1119/1.10903
  22. [22]K. Kruse, J.F. Joanny, F. Julicher, J. Prost and K. Sekimoto, “Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments”, Phy. Rev. Lett, vol. 92, 2004, pp 078101(1-10) (2004).10.1103/PhysRevLett.93.099902
  23. [23]F. Julicher, A. Ajdari and J. Prost, “Modeling Molecular Motors”, Rev. Mod. Phy. Vol 69, 1997, pp 1269-1281 (1997).10.1103/RevModPhys.69.1269
  24. [24]J. Lighthill, “Flagellar Hydrodynamics”, SIAM Rev. vol. 18, 161, (1976).10.1137/1018040
  25. [25]A.M. Brower, C. Frochst, F.C. Gatti, D.A. Leigh, L. Mottier, F. Paolucci, S. Roffio and G.W.H. Wurpel, “Photoinduction of fast, Reversible, Translational motion in a hydrogen- bonded molecular Shuttle”, Science, Vol. 291, pp 2124-2128, Mar. (2001).10.1126/science.105788611251112
  26. [26]B.L. Feringa, “In Control of Motion: From Molecular Switches to Molecular Motors”, Acc. Chem. Res., Vol. 34, no. 6, pp 504-513, June (2001).
  27. [27]B.L. Feringa, N. Koumura, R.A. van Delden and M.K.J. ter Wiel, “Light Driven Molecular Switches and Motors”, App. Phys. A, vol. 75, pp 301-308, (2002).10.1007/s003390201338
  28. [28]C.H. Wiggins and R.E. Goldstein, “Flexive and Propulsive Dynamics of Elastica at Low Reynolds Number”, Phy. Rev. Lett., vol. 80, 1998, pp 3879-3882 (1998).10.1103/PhysRevLett.80.3879
  29. [29]S. Camalet, F. Julicher and J. Prost, “Self-Organized Beating and Swimming of Internally Driven Filaments”, Phy Rev Lett, vol. 82, 1999, pp 1590-1593 (1999).10.1103/PhysRevLett.82.1590
  30. [30]C.W. Wolgemuth, T.R. Powers and R.E. Goldstein, Phy. Rev. Lett. Vol. 84, 1623, (2000).10.1103/PhysRevLett.84.1623
  31. [31]A. Cavalcanti T. H.ogg and B. Shirinzadeh, “Nanorobotics System Simulation in 3D Workspaces with Low Reynolds Number”, IEEE MHS 2006 International Symposium on Micro-NanoMechatronics and Human Science, 2006, pp 226-231, (2006).10.1109/MHS.2006.320269
  32. [32]B. W. Podaima, T. Vaseeharan, and Richard Gordon, “Microscopic dynamics of cytobots” CCECE 2004 - CCGEI 2004, Niagara Falls, May 2004, pp 1527-1532, (2004).
  33. [33]D. Brey, Cell Movements: From Molecules to Motility, 2nd Ed., Garland Publishing Inc., NY, (2001).
  34. [34]J.L.L. Higdon, “A hydrodynamic analysis of flagellar propulsion” J. Fluid Mech. Vol. 90, 685, (1979).10.1017/S0022112079002482
  35. [35]M.J. Kim and T.R. Powers, “Hydrodynamic interactions between rotating helices”, Phy. Rev. E, 69, 061910, (2004).10.1103/PhysRevE.69.061910
  36. [36]T.R. Powers, “Role of body rotation in bacterial flagellar bundling”, Phy Rev E, vol. 65, 040903 (R), (2002).10.1103/PhysRevE.65.040903
  37. [37]T.M. Squires and S.R. Quake, “Microfluidics: Fluid Physics at the nanoliter scale”, Review of Modern Physics, American Phy. Soc., vol. 77, no. 3 pp 977-1026. (2005)10.1103/RevModPhys.77.977
  38. [38]N.N. Sharma, M. Ganesh and R.K. Mittal, “Non-Brownian Motion of Nanoparticle: An Impact Process Model”, IEEE Tr. Nanotechnology, vol. 3, no. 1, pp 180-186, (2004).
  39. [39]N.N. Sharma, M. Ganesh and R.K. Mittal, “Nano-Electromechanical System Impact Spectrum Modeling and Clubbing of Structural Properties”, IE (I) Journal-MC, Vol. 85, pp 188-193, Jan. (2005).
  40. [40]N.N. Sharma and R.K. Mittal, “Brownian motion model of Nanoparticle Considering Non-Rigidity of Matter-A systems Modeling Approach”, IEEE Tr. Nanotechnology, vol. 4, no. 2, pp 180-186, (2005).10.1109/TNANO.2004.842066
  41. [41]N.N. Sharma and R.K. Mittal, “Non-Rigidity: Vital Link between Dynamics of Nanoparticle and Biospecies” invited talk in III Int. Conference on Solid State to Biophysics, 24 June – 1 July, Dubrovnik, (2006).
  42. [42]N.N. Sharma and R.K. Mittal, “Brownian Motion of 1-DOF Nanorobot”, in Proceedings of International Conference on Emerging Mechanical Technology-Micro to Nano, EMTM2N-2007, 16-18 Feb., BITS, Pilani, 2007, pp 35-38, (2007).
  43. [43]Niti Nipun Sharma, “Radiation model for Nanoparticle:extension of classical Brownian motion”, Int. J. Nanoparticle Research, Springer, doi 10.1007/s11051-007-9256-0, June (2007).
  44. [44]J.N.Israelachvilli, Intermolecular and Surface Forces, Academic Press, 1992.
  45. [45]Michelle L. Gee, Patricia M. McGuiggan, and Jacob N. Israelachvili and Andrew M. Homola, “Liquidlike to Solidlike Transition of Molecularly Thin Films under Shear”, Journal of Chem. Phy., vol. 93, no. 3, pp.1895-1906 (1990)
  46. [46]B. Bhusan., Introduction to Tribology, Wiley, NY, 2002.
  47. [47]B. Bhusan, and M. Nosonovsky, “Scale Effect in friction using Strain Gradient Plasticity and Dislocation-Assisted Sliding”, Acta Mater, vol. 51, 2003, pp 4331-4345 (2003).10.1016/S1359-6454(03)00261-1
  48. [48]F.P. Bowden and D. Tabor, The friction and Lubrication of Solids, Oxford, Claredon, 1950.
  49. [49]M. Nosonovsky, “Size, Load and Velocity effect in Friction at micro/nanoscale”, in Proc. Ont. Conf. Emerging Mechanical Technology Macro to Nano, EMTM2N-2007, 16-18 Feb. 2007, BITS, Pilani, India, (ed. R.K. Mittal, N.N. Sharma), Research Publishing Services, Chennai, 2007, (2007).
  50. [50]S. Chandrasekhar, “Brownian Motion, Dynamical Friction and Stellar Dynamics”, Rev. Mod. Phy., vol. 21, no. 3, 1949, pp 383-388 (1949).10.1103/RevModPhys.21.383
  51. [51]M.L. Roukes, “Nano Electromechanical Systems” in Tech. Digest of 2000 Solid-State Sensor and Actuator Workshop, Hilton Isl., SC, 6/4-8/2000, pp 1-10, (2000).10.31438/trf.hh2000.89
  52. [52]Z. Cui and C. Gu, “Nanofabrication Challenges for NEMS”, in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 18 - 21, (2006).10.1109/NEMS.2006.334855
  53. [53]Z. ChinaIgor and G. Neizvestny, “Trends in Development of Modern Silicon Nanoelectronics”, 7th Int. Siberian Workshop and Tutorials EDM’2006, JULY 1-5, 2006, ERLAGOL. ISSN 1815-3712 ISBN 5-7782-0646-1 (2006).
  54. [54]T. Gupta and A. H. Jayatissa, “Recent Advances in Nanotechnology: Key Issues & Potential Problem Areas”, 0-7803-7976-4/031$17.00 02003 IEEE, pp 469-472 (2003).
  55. [55]Chun-Yen Chang, “The Highlights in the Nano World”, Proc. IEEE, vol. 91, no. 11, 2003, pp 1756-1764 (2003).10.1109/JPROC.2003.818337
  56. [56]R. Chau (Plenary Talk), “Silicon Nanotechnologies and Emerging Non-Silicon Nanoelectronics”,1-4244-0161-5/06/$20.00 ©2006 IEEE (2006)
  57. [57]P. Thakur and N.N. Sharma, “CNTFET: A State of Art Review”, in Proc. 2nd ISSS conference on MEMS, Microsensors, Smart Materials & Structures, jointly organized by CEERI, Pilani and BITS, Pilani, India, 16-18 Nov. 2007 (2007).
  58. [58]S. Iijima, “Helical microtubules of graphite carbon”, Nature, vol. 354, pp 56-58, (1991).10.1038/354056a0
  59. [59]P. Kim and C.M. Lieber, “Nanotube nanotweezers”, Science, vol. 286, pp 2148-2150, 1999.10.1126/science.286.5447.214810591644
  60. [60]J. Cumings and A. Zettl, “Low friction nanoscale linear bearing realized from multiwall carbon nanotubes”, Science, vol. 289, pp 602-604, (2000).10.1126/science.289.5479.60210915618
  61. [61]J. Cumings, P.G. Collins and A. Zettl, “Peeling and Sharpening Multiwall Carbon Nanotubes”, Nature, vol. 406, pp 586, 2000.10.1038/3502069810949291
  62. [62]A.P. Davis, “Synthetic Molecular Motors”, Nature, vol. 401, pp 120-121 (1999).10.1038/4357610490015
  63. [63]W.R. Browne and B.L. Feringa, “Making molecular machines work”, Nature Nanotechnology, vol. 1, pp 25-35 (2006).10.1038/nnano.2006.4518654138
  64. [64]A.M. Schoevaars, W. Kruizinga, R.W.J. Zijlstra, N. Veldman, A.L. Spek and B.L. Feringa, “Towards a switchable molecular rotor”, Journal Org. Chem., vol. 62, pp 49434948 (1997).10.1021/jo962210t
  65. [65]J. Clayden and J.H. Pink, “Concerted Rotation in Tertiary aromatic Amide: Towards a simple molecular gear”, Angew. Chem. Int. Edn. Engl., vol. 37, pp 1937-1939 (1998).
  66. [66]N.P.M. Huck, W.F. Jager, B. de Lange and B.L. Feringa, “Dynamic control and Amplification of Molecular Chirality by Circularly Polarized Light”, Science, vol. 273, 1686-1688 (1996).
  67. [67]S.A. Bissell, E. Cordova, A.E. Kaifer, and J.F. Stoddart, “A Chemically and Electrochemically switchable Moleculer Shuttle”, Nature, vol. 369, pp 133-137, (1994).10.1038/369133a0
  68. [68]T.C. Beddard and J.S. Moore, “Design and Synthesis of a Molecular Turnstile”, Journal Am. Chem. Soc., vol. 117, pp 10662-10671 (1995).10.1021/ja00148a008
  69. [69]T.R. Kelly, I. Tellitu and J.P. Sestelo, “New Molecular Devices: In Search of Molecular Ratchets”, Journal Org. Chem., vol. 63, pp 3655-3665 (1998).
  70. [70]J.D. Badjic, V. Balzani, A. Credi, S. Silvi and J.F. Stoddart, “A Molecular Elevator”, Science, vol. 303, pp 1845-1849, (2001).10.1126/science.109479115031499
  71. [71]J.D. Badjic et al., “Operating Molecular Elevators”, Journal Am. Chem. Soc., vol. 128, pp 1489-1499, (2006).10.1021/ja054395416448119
  72. [72]J.K. Gimzewski et al., “Rotation of a single molecule within a supramolecular bearing”, Science, vol. 281, pp 531-533, 1998.10.1126/science.281.5376.5319677189
  73. [73]V. Balzani, M. Gomez-Lopez and J.F. Stoddart, “Molecular Machines”, Acc. Chem. Res., vol. 31, pp 405-414, (1998).10.1021/ar970340y
  74. [74]J.P. Sauvage, “Transition metal-containing rotaxanes and catenanes in motion toward molecular machine and motors”, Acc.. Chem. Res., vol. 31, pp 611-619 (1998).10.1021/ar960263r
  75. [75]T. Muraoka, K. Kinbarra, Y. Kobayashi and T. Aida, “Light driven open-close motion of chiral molecular scissors”, Journal Am. Chem. Soc., vol. 125, pp 5612-5613 (2003).10.1021/ja034994f12733882
  76. [76]T. Muraoka, K. Kinbarra and T. Aida, “Mechanical Twisting of a guest by a photoresponsive host”, Nature, vol. 440, pp 512-515 (2006).10.1038/nature0463516554815
  77. [77]H. W. Kroto, A.W. Allaf and S.P. Balm, “C60: Buckminsterfullerene”, Nature, vol. 318, pp 162-163 (1985).
  78. [78]J. F. Joanny, F. Julicher, and J. Prost, “Motion of an Adhesive Gel in a Swelling Gradient: A Mechanism for Cell Locomotion”, Phy. Rev. Lett., vol. 90, no. 16, pp 168102 (1-4) (2003).
  79. [79]R.D. Astumian, “Making Molecules into motors”, Sci. Am., vol. 285, pp 45-51 (2001).10.1038/scientificamerican0701-5611432195
  80. [80]R.T. Abrahm, R.S. Tibbetts, “Cell Biology: Guiding ATM to broken DNA”, Science, vol. 308, pp 510-511, (2005).
Language: English
Page range: 87 - 109
Published on: Dec 13, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 N. N. Sharma, R.K. Mittal, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.