Have a personal or library account? Click to login

A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

Open Access
|Mar 2017

References

  1. Z. He, Y. Shen, Q. Wang, and Y. Wang, “Optimized ensem- ble EMD-based spectral features for hyperspectral image classifica- tion,”IEEE Trans. Instrum. Meas., vol. 63, no. 5, pp. 1041–1056, May 2014.
  2. Z. He, Q. Wang, Y. Shen, J. Jin, and Y. Wang, “Multivariate Gray model-based BEMD for hyperspectral image classification,”IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 889–904, May 2013.10.1109/TIM.2013.2246917
  3. A. Prieto, F. Bellas, R. J. Duro, and F. López-Peña, “An adaptive approach for the progressive integration of spatial and spectral features when training ground-based hyperspectral imaging classifiers,”IEEE Trans. Instrum. Meas., vol. 59, no. 8, pp. 2083–2093, Aug. 2010.
  4. L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral–spatial classification of hyperspectral images with a superpixel-based discrimi- native sparse model,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4186–4201, Aug. 2015.
  5. L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, “Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6663–6674, Dec. 2015.
  6. J. L. Crespo, R. J. Duro, and F. L. Pena, “Gaussian synapse ANNs in multi- and hyperspectral image data analysis,”IEEE Trans. Instrum. Meas., vol. 52, no.3,pp. 724–732, Jun. 2003.10.1109/TIM.2003.814693
  7. B. Hörig, F. Kühn, F. Oschütz, and F. Lehmann, “HyMap hyperspectral remote sensing to detect hydrocarbons,”Int. J. Remote Sens., vol. 22, no. 8, pp. 1413–1422, Nov. 2001.
  8. B. Du and L. Zhang, “Random-selection-based anomaly detector for hy- perspectral imagery,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578–1589, May 2011.
  9. J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet- rical, statistical, and sparse regression-based approaches,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol.5, no. 2, pp. 354–379, Apr. 2012.10.1109/JSTARS.2012.2194696
  10. [10]M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral images,”Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.10.1109/JPROC.2012.2197589
  11. V. Vapnik, The Nature of Statistical Learning Theory. Berlin, Germany: Springer-Verlag, 1995.10.1007/978-1-4757-2440-0
  12. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,”IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
  13. D. Böhning, “Multinomial logistic regression algorithm,”Ann. Inst. Stat. Math., vol. 44, no. 1, pp. 197–200, Mar. 1992.10.1007/BF00048682
  14. J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields,”IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809–823, Mar. 2012.10.1109/TGRS.2011.2162649
  15. J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085–4098, Nov. 2010.
  16. Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classifi- cation using dictionary-based sparse representation,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.
  17. U. Srinivas, Y. Chen, V. Monga, N. M. Nasrabadi, and T. D. Tran,”Exploiting sparsity in hyperspectral image classification via graphical models,”IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3, pp. 505–509, May 2013.10.1109/LGRS.2012.2211858
  18. Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image clas- sification via kernel sparse representation,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 217–231, Jan. 2013.10.1109/TGRS.2012.2201730
  19. L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral-spatial hyperspectral image classification via multiscale adaptive sparse rep- resentation,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7738–7749, Dec. 2014.
  20. L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral-spatial classification of hyperspectral images with a superpixel-based discrimi- native sparse model,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4186–4201, Aug. 2015.
  21. B. Du and L. Zhang, “A discriminative metric learning based anomaly detection method,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844–6857, Nov. 2014.
  22. S. Prasad and L. Mann Bruce, “Limitations of principal components analysis for hyperspectral target recognition,”IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 625–629, Oct. 2008.10.1109/LGRS.2008.2001282
  23. L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, “Dimensionality reduction based on clonal selection for hyperspectral imagery,”IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4172–4186, Dec. 2007.
  24. H. Li, Z. Ye, and G. Xiao, “Hyperspectral image classification using spectral-spatial composite kernels discriminant analysis,”IEEE J. Sel.Topics Appl. Earth Observ. Remote Sens., to be published.
  25. Q. Shi, L. Zhang, and B. Du, “Semisupervised discriminative locally enhanced alignment for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4800– 4815, Sep. 2013.
  26. G. Camps-Valls and L. Bruzzone, Kernel Methods for Remote Sensing Data Analysis. New York, NY, USA: Wiley, 2009.10.1002/9780470748992
  27. J. Li, I. Dópido, P. Gamba, and A. Plaza, “Complementarity of discrim- inative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2899–2912 May 2015.10.1109/TGRS.2014.2366513
  28. J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification of hyperspectral data from urban areas based on extended morphological profiles,”IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491, Mar. 2005.10.1109/TGRS.2004.842478
  29. J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias, and J. A. Benediktsson, “Generalized composite kernel framework for hyperspectral image clas- sification,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4816–4829, Sep. 2013.
  30. Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, “Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques,”IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973–2987, Aug. 2009.
  31. G. Mori, X. Ren, A. A. Efros, and J. Malik, “Recovering human body configurations: Combining segmentation and recognition,”in Proc. IEEE Conf. Comput. Soc. Conf. Comput. Vis. Pattern Recog., 2004, pp. II-326–II-333.
  32. R. Achanta et al., “SLIC superpixels compared to state-of-the-art super-pixel methods,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.
  33. M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate superpixel segmentation,”in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2011, pp. 2097–2104.10.1109/CVPR.2011.5995323
  34. G. Zhang, X. Jia, and N. M. Kwok, “Super pixel based remote sensing im- age classification with histogram descriptors on spectral and spatial data,”in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2012, pp. 4335–4338.10.1109/IGARSS.2012.6351708
  35. J. Liu, W. Yang, S. Tan, and Z. Wang, “Remote sensing image classifi- cation based on random projection super-pixel segmentation,”in Proc. SPIE, 2013, Art ID. 89210T.10.1117/12.2032363
  36. Z. Sun, C. Wang, H. Wang, and J. Li, “Learn multiple-kernel SVMs for domain adaptation in hyperspectral data,”IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1224–1228, Sep. 2013.
  37. Q. Jackson and D. A. Landgrebe, “Adaptive Bayesian contextual classification based on Markov random fields,”IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2454–2463, Nov. 2002.
  38. F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural networks for efficient hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271– 2282, May 2010.
  39. M. Borhani and H. Ghassemian, “Kernel Multivariate Spectral–Spatial Analysis of Hyperspectral Data,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2418-2426, June 2015.
  40. F. Mirzapour and H. Ghassemian, “Multiscale Gaussian Derivative Functions for Hyperspectral Image Feature Extraction,”IEEE Geosci. Remote Sens. Lett, vol. 13, no. 4, pp. 525-529, April 2016.10.1109/LGRS.2016.2521763
  41. G. Hughes, “On the mean accuracy of statistical pattern recognizers,”IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.10.1109/TIT.1968.1054102
  42. M. Imani and H. Ghassemian, “Binary coding based feature extraction in remote sensing high dimensional data,”Information Sciences, vol. 342, pp.191-208, 2016.10.1016/j.ins.2016.01.032
  43. Q. Zhang, Y. Tian, Y. Yang, and C. Pan, “Automatic Spatial–Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 261–279, Jan. 2015.10.1109/TGRS.2014.2321405
  44. M. Imani and H. Ghassemian, “Feature Extraction Using WeightedTraining Samples,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 7, pp.1387-1391, July 2015.
  45. [45]X. Liu, L. Wang, J. Zhang, J. Yin, and H. Liu, “Global and Local Structure Preservation for Feature Selection,”IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1083–1095, June 2014.
  46. S. A. Hosseini and H. Ghassemian, “Rational Function Approximation forFeature Reduction in Hyperspectral Data,”Remote Sens. Lett., vol. 7, no. 2,101-110, 2016.10.1080/2150704X.2015.1101180
  47. [47]M. Imani and H. Ghassemian, “Feature space discriminant analysis for hyperspectral data feature reduction,”ISPRS Journal of Photogrammetry and Remote Sensing, vol. 102, pp. 1-13, 2015.10.1016/j.isprsjprs.2014.12.024
  48. M. Golipour, H. Ghassemian, and F. Mirzapour, “Integrating Hierarchical Segmentation Maps With MRF Prior for Classification of Hyperspectral Images in a Bayesian Framework,”IEEE Trans. Geosci. Remote Sens., vol.54, no. 2, pp. 805-816, Feb. 2016.10.1109/TGRS.2015.2466657
  49. A. Zehtabian and H. Ghassemian, “An Adaptive Pixon Extraction Technique for Multispectral/Hyperspectral Image Classification,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 4, April 2015.10.1109/LGRS.2014.2363586
  50. G. Camps-Valls, L. Gomez-Chova, J. Muoz-Mar, J. Vila-Francs, and J.Calpe-Maravilla, “Composite kernels for hyperspectral image classification,”IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97, Jan. 2006.10.1109/LGRS.2005.857031
  51. A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL,”J. Mach. Learn. Res., vol. 9, no. 11, pp. 2491–2521, Nov. 2008.
  52. J. Li, P. Marpu, A. Plaza, J. Bioucas-Dias, and J. A. Benediktsson, “Generalized composite kernel framework for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp.4816–4829, Sept. 2013.
  53. A. Green, M. Berman, P. Switzer, and M. Craig, “A transformation for ordering multispectral data in terms of image quality with implications for noise removal,”IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65–74, Jan. 1988.10.1109/36.3001
  54. A.Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, “Hyperspectral image classification with independent component discriminant analysis,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865–4876, Dec.2011.
  55. B. Du, L. Zhang, L. Zhang, T. Chen, and K. Wu, “A discriminative manifold learning based dimension reduction method,”Int. J. Fuzzy Syst., vol. 14, no. 2, pp. 272–277, Jun. 2012.
  56. M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with morphological attribute filters for the analysis of hyperspectral data,”Int. J. Remote Sens., vol. 31, no. 22, pp. 5975–5991,2010.
  57. J. Li, X. Huang, P. Gamba, J. M. Bioucas-Dias, L.Zhang, and J. Atli Benediktsson, A. Plaza, “Multiple Feature Learning for Hyperspectral Image Classification,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592-1606, March 2015.
  58. J. Li, J. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085–4098, Nov.2010.
  59. W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, “Nearest regularized subspace for hyperspectral classification,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 477–489, Jan. 2014.10.1109/TGRS.2013.2241773
  60. W. Li and Q. Du, “Joint within-class collaborative representation for hyperspectral image classification,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2200–2208, June 2014.
  61. M. Xiong, Q. Ran, W. Li, J. Zou, and Q. Du, “Hyperspectral Image Classification Using Weighted Joint Collaborative Representation,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1209–1213, June 2015.
  62. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens- ing images with support vector machines,”IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
  63. L. Bruzzone, M. Chi, and M. Marconcini, “A novel transductive SVM for semisupervised classification of remote-sensing images,”IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363–3373, Nov. 2006.
  64. M. Chi and L. Bruzzone, “Semisupervised classification of hyperspectral images by SVMs optimized in the primal,”IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870–1880, Jun. 2007.
  65. Y. Zhong, Y. Lin, and L. Zhang, “A support vector conditional random classifier with a Mahalanobis distance boundary constraint for high spatial resolution remotes sensing imagery,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1314–13330, Apr. 2014.
  66. J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression andMarkov random fields,”IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809–823, Mar. 2012.10.1109/TGRS.2011.2162649
  67. J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression,”IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 318–322, Mar. 2013.10.1109/LGRS.2012.2205216
  68. F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural net- works for efficient hyperspectral image classification,”IEEE Trans.Geosci. Remote Sens., vol. 48, no. 5, pp. 2271– 2282, May 2010.
  69. Y. Zhong and L. Zhang, “An adaptive artificial immune network for supervised classification of multi-hyperspectral remote sensing imagery,”IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 894–909, Mar. 2012.10.1109/TGRS.2011.2162589
  70. H. Jiao, Y. Zhong, and L. Zhang, “Artificial DNA computing-based spectral encoding and matching algorithm for hyperspectral remote sensing data,”IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 4085–4104, Oct. 2012.
  71. G. Camps-Valls, L. Gomez-Chova, J. Muñoz-Marí, J. Vila-Francés, and J. Calpe-Maravilla, “Composite kernels for hyperspectral image classi- fication,”IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97, Jan. 2006.10.1109/LGRS.2005.857031
  72. J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias, and J. A. Benediktsson, “Generalized composite kernel framework for hyperspectral image clas- sification,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4816–4829, Sep. 2013.
  73. J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmenta- tion using a new Bayesian approach with active learning,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947–3960, Oct. 2011.
  74. J. Lin, Q. Wang, and Y. Yuan, “In defense of iterated conditional mode for hyperspectral image classification,”in ICME, July 2014, pp. 1–6.10.1109/ICME.2014.6890171
  75. Q. Wang, J. Lin, and Y. Yuan, “Salient band selection for hyperspectral image classification via manifold ranking,”IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1279–1289, June 2016.
  76. C. Chen, W. Li, H. Su, and K. Liu, “Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine,”Remote Sensing, vol. 6, no. 6, pp. 5795–5814, 2014.
  77. B. Du, M. Zhang, L. Zhang, R. Hu, and D. Tao, “Pltd: Patch-based low- rank tensor decomposition for hyperspectral images,”IEEE Transactions on Multimedia, vol. 19, no. 1, pp. 67–79, Jan 2017.10.1109/TMM.2016.2608780
  78. Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classification using dictionary-based sparse representation,”IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 10, pp. 3973–3985, 2011.
  79. J. Li, H. Zhang, Y. Huang, and L. Zhang, “Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary,”IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 6, pp. 3707–3719, 2014.
  80. J. Li, H. Zhang, L. Zhang, X. Huang, and L. Zhang, “Joint collab- orative representation with multitask learning for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 9, pp.5923–5936, 2014.
  81. W. Li and Q. Du, “Joint within-class collaborative representation for hyperspectral image classification,”IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2200–2208, 2014.
  82. W. Li, Q. Du, and M. Xiong, “Kernel collaborative representation with tikhonov regularization for hyperspectral image classification,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 48–52, 2015.10.1109/LGRS.2014.2325978
  83. M. Xiong, Q. Ran, W. Li, J. Zou, and Q. Du, “Hyperspectral image classification using weighted joint collaborative representation,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1209–1213, 2015.
  84. [84]S. Jia, L. Shen, and Q. Li, “Gabor feature-based collaborative repre- sentation for hyperspectral imagery classification,”IEEE Trans. Geosci. Remote Sensing, vol. 53, no. 2, pp. 1118–1129, 2015.
  85. J. Jiang, C. Chen, X. Song, and Z. Cai, “Hyperspectral image classifica- tion using set-to-set distance,”in ICASSP, March 2016, pp. 3346–3350.10.1109/ICASSP.2016.7472297
  86. J. Ma, J. Zhao, J. Tian, X. Bai, and Z. Tu, “Regularized vector field learning with sparse approximation for mismatch removal,”Pattern Recognition, vol. 46, no. 12, pp. 3519–3532, 2013.
  87. L. Wang, K. Lu, P. Liu, R. Ranjan, and L. Chen, “Ik-svd: dictionary learning for spatial big data via incremental atom update,”Computing in Science & Engineering, vol. 16, no. 4, pp. 41– 52, 2014.10.1109/MCSE.2014.52
  88. J. Jiang, X. Ma, Z. Cai, and R. Hu, “Sparse support regression for image super-resolution,”IEEE Photonics Journal, vol. 7, no. 5, pp. 1–11, Oct2015.10.1109/JPHOT.2015.2484287
  89. J. Ma, C. Chen, C. Li, and J. Huang, “Infrared and visible image fusion via gradient transfer and total variation minimization,”Inf. Fusion, vol. 31, pp. 100–109, 2016.10.1016/j.inffus.2016.02.001
  90. J. Jiang, J. Ma, C. Chen, X. Jiang, and Z. Wang, “Noise robust face image super-resolution through smooth sparse representation,”IEEE Trans. on Cybern., vol. PP, no. 99, pp. 1–12, 2016.
  91. W. Song, P. Liu, and L. Wang, “Sparse representation-based correla- tion analysis of non- stationary spatiotemporal big data,”International Journal of Digital Earth, vol. 9, no. 9, pp. 892– 913, 2016.10.1080/17538947.2016.1158328
  92. J. Wei, Y. Huang, K. Lu, and L. Wang, “Nonlocal low-rank-based compressed sensing for remote sensing image reconstruction,”IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 10, pp. 1557–1561,2016.
  93. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, 2009.10.1109/TPAMI.2008.7919110489
  94. L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative representation: Which helps face recognition?”in ICCV, 2011, pp. 471–478.10.1109/ICCV.2011.6126277
  95. Y. Yuan, J. Lin, and Q. Wang, “Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization,”IEEE Trans. Cybernetics, vol. PP, no. 99, pp. 1– 12, 2015.10.1109/TCYB.2015.248432426485729
  96. J. Liu, Z. Wu, J. Li, A. Plaza, and Y. Yuan, “Probabilistic-kernel collaborative representation for spatial-spectral hyperspectral image clas- sification,”IEEE Trans. Geosci. Remote Sensing, vol. 54, no. 4, pp.2371–2384, April 2016.
  97. H. Pu, Z. Chen, B. Wang, and G. M. Jiang, “A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery,”IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 11, pp. 7008–7022, Nov 2014.
  98. C. Li, Y. Ma, X. Mei, C. Liu, and J. Ma, “Hyperspectral image classification with robust sparse representation,”IEEE Geosci. Remote Sens. Lett., vol. 13, no. 5, pp. 641–645, May 2016.10.1109/LGRS.2016.2532380
  99. Y. Yuan, Q. Wang, and G. Zhu, “Fast hyperspectral anomaly detection via high-order 2-D crossing filter,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 620–630, Feb. 2015.10.1109/TGRS.2014.2326654
  100. [100]L. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, “Hyperspectral remote sensing image subpixel target detection based on supervised metric learn- ing,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4955–4965, Aug. 2014.
  101. B. Zhang, D. Wu, L. Zhang, Q. Jiao, and Q. Li, “Application of hyperspectral remote sensing for environment monitoring in mining areas,”Environ. Earth Sci., vol. 65, no. 3, pp. 649– 658, Feb. 2012.10.1007/s12665-011-1112-y
  102. G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A. Benediktsson, “Advances in hyperspectral image classification: Earth monitoring with statistical learning methods,”IEEE Signal Proc. Mag., vol. 31, no. 1, pp. 45–54, Jan. 2014.10.1109/MSP.2013.2279179
  103. M. A. Lee, Y. Huang, H. Yao, and S. J. Thomson, “Determining the effects of storage on cotton and soybean leaf samples for hyperspectral analy- sis,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2562–2570, Jun. 2014.
  104. M. Dalponte, H. O. Orka, T. Gobakken, D. Gianelle, and E. Nasset, “Tree species classification in boreal forests with hyperspectral data,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2632–2645, May 2013.
  105. J. Chi and M. M. Crawford, “Spectral unmixing-based crop residue esti- mation using hyperspectral remote sensing data: A case study at Purdue university,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2531–2539, Jun. 2014.
  106. W. Li, C. Chen, H. Su, and Q. Du, “Local binary patterns and extreme learning machine for hyperspectral imagery classification,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3681–3693, Jul. 2015.
  107. W. Li, Q. Du, F. Zhang, and W. Hu, “Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery,”IEEE Geosci.Remote Sens. Lett., vol. 12, no. 2, pp. 389– 393, Feb. 2015.10.1109/LGRS.2014.2343956
  108. B. Zhang, S. S. Li, X. P. Jia, L. R. Gao, and M. Peng, “Adaptive Markov random field approach for classification for hyperspectral imagery,”IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973–977, Sep. 2011.10.1109/LGRS.2011.2145353
  109. W. Li and Q. Du, “Joint within-class collaborative representation for hyperspectral image classification,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2200– 2208, Jun. 2014.
  110. [110]W. Li and Q. Du, “Gabor-filtering based nearest regularized subspace for hyperspectral image classification,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1012–1022, Apr. 2014.
  111. W. Li, Q. Du, and M. Xiong, “Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 48–52, Jan. 2015.10.1109/LGRS.2014.2325978
  112. J. Li, H. Zhang, L. Zhang, X. Huang, and L. Zhang, “Joint collaborative representation with multitask learning for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5923–5936, Sep. 2014.
  113. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens- ing images with support vector machines,”IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
  114. F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural net- works for efficient hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271–2282, May 2010.
  115. Y. Zhong and L. Zhang, “An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery,”IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 894–909, Mar. 2012.10.1109/TGRS.2011.2162589
  116. G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances, and J. Calpe- Maravilla, “Composite kernels for hyperspectral image classifi- cation,”IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 93–97, Jan.2006.10.1109/LGRS.2005.857031
  117. J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmen- tation using a new Bayesian approach with active learning,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947–3960, Oct. 2011.
  118. M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral–spatial classification of hyperspectral images,”Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.10.1109/JPROC.2012.2197589
  119. J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias, and J. A. Benediktsson, “Generalized composite kernel framework for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4816–4829, Sep. 2013.
  120. R. Ji, Y. Gao, R. Hong, Q. Liu, D. Tao, and X. Li, “Spectral–spatial con- straint hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 3, pp. 1811– 1824, Mar. 2014.
  121. H. Pu, Z. Chen, B. Wang, and G. M. Jiang, “A novel spatial–spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7008–7022, Nov. 2014.
  122. M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias, and X. Li, “Spectral–spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6298–6314, Oct. 2014.
  123. P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, “Spectral–spatial classification of hyperspectral images based on hidden Markov random fields,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2565–2574, May 2014.
  124. Y. Zhou, J. Peng, and C. L. P. Chen, “Dimension reduction using spatial and spectral regularized local discriminant embedding for Hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 1082–1095, Feb. 2015.
  125. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,”IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
  126. F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural networks for efficient hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271–2282, May 2010.
  127. M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral images,”Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.10.1109/JPROC.2012.2197589
  128. Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classification using dictionary-based sparse representation,”IEEE Trans. Geosci. Remote. Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.
  129. H. Zhang, J. Li, Y. Huang, and L. Zhang, “A nonlocal weighted joint sparse representation classification method for hyperspectral imagery,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,no.6,pp. 2056–2065, Jun. 2014.
  130. Q. Shi, B. Du, and L. Zhang, “Spatial coherence-based batch-mode active learning for remote sensing image classification,”IEEE Trans. Image Process., vol. 24, no. 7, pp. 2037–2050, Jul. 2015.
  131. I. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley, 2005.10.1002/0470013192.bsa501
  132. J. Li et al., “Multiple feature learning for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592–1606, Mar. 2015.
  133. E. Zhang, X. Zhang, H. Liu, and L. Jiao, “Fast multifeature joint sparserepresentation for hyperspectral image classification,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 7, pp. 1397–1401, Jul. 2015.
  134. I. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley, 2005.10.1002/0470013192.bsa501
  135. L. O. Jimenez-Rodriguez, E. Arzuaga-Cruz, and M. Velez-Reyes, “Unsupervised linear feature-extraction methods and their effects in the clas- sification of high-dimensional data,”IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 469–483, Feb. 2007.10.1109/TGRS.2006.885412
  136. Rajagopalan, B., Lall, U.: A k Nearest Neighbor Simulator for Daily Precipitation and Other Weather Variables. Water Resources Research 35 (10), 3089--3101 (1999)10.1029/1999WR900028
  137. Chedad, A., Moshou, D., Aerts, J.M., et al : Recognition System for Pig Cough based on Probabilistic Neural Networks. Journal of Agricultural Engineering Research 79(4), 449--457 (2001)10.1006/jaer.2001.0719
  138. Schatzki, T.F., Haff, R.P., Young, R., et al: Defect Detection in Apples by Means of X-ray Imaging. Transactions of the American Society of Agricultural Engineers 40(5), 1407-1415 (1997)10.13031/2013.21367
  139. Kirchner, K., Tolle, K.-H., Krieter, J.: The analysis of simulated sow herd datasets using decision tree technique. Comput. Electron. Agric. 42, 111--127 (2004)10.1016/S0168-1699(03)00119-4
  140. Vapnik, W. N., Chervonenkis, A. Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264--280 (1971)10.1137/1116025
  141. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
  142. Giorgio, V, Marco, M, Francesca, R.: Cancer recognition with bagged ensembles of support vector machines. Neurocomputing 56, 461--466 (2004)10.1016/j.neucom.2003.09.001
  143. [143]Hyunsoo, K., Peg, H., Haesun, P.: Dimension Reduction in Text Classification with Support Vector Machines. Journal of Machine Learning Research 6, 37--53 (2005)
  144. Simon, T., Daphne, K.: Support Vector Machine Active Learning with Applications to Text Classification. Journal of Machine Learning Research, 45--66 (2001)
  145. Bellotti, T., Crook, J.: Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications 36, 3302--3308 (2009)10.1016/j.eswa.2008.01.005
  146. Lee, Y. C.: Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications 33(1), 67--74 (2007)10.1016/j.eswa.2006.04.018
  147. Huang, C. L., Chen, M. C., Wang, C. J.: Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications 33(4), 847--7856 (2007)10.1016/j.eswa.2006.07.007
  148. Tao, D.C., Tang, X. O., Li, X. L., Wu, X. D.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (7), 1088--1099 (2006)10.1109/TPAMI.2006.13416792098
  149. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”SIAM J.Scientific Computing, vol. 20, no. 1, pp. 33–61, 1999.10.1137/S1064827596304010
  150. Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition,”in 27th Annual Asilomar Conference on Signals, Systems, and Computers, 1993.
  151. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”IEEE Trans. on Signal Processing, vol. 41, pp. 3397–3415, 1993.
  152. M. Aharon, M. Elad, and A. Bruckstein, “The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation,”IEEE Trans. On Signal Processing, to appear.
  153. I. Drori and D. Donoho, “Solution of L1 minimization problems by LARS/Homotopy methods,”in ICASSP, 2006, vol. 3, pp. 636–639.
  154. J. Starck, M. Elad, and D. Donoho, “Image decomposition via the combination of sparse representation and a variational approach,”IEEE Trans. on Image Processing, vol. 14, no. 10, pp. 1570–1582, 2005.
  155. Y. Li, A. Cichocki, and S. Amari, “Analysis of sparse representation and blind source separation,”Neural Computation, vol. 16, no. 6, pp. 1193–1234, 2004.
  156. B. Olshausen, P. Sallee, and M. Lewicki, “Learning sparse image codes using a wavelet pyramid architecture,”in NIPS, 2001, pp. 887–893.
  157. M. Elad and M. Aharon, “Image denoising via learned dictionaries and sparse representation,”in CVPR, 2006.
  158. M. Elad, B. Matalon, and M. Zibulevsky, “Image denoising with shrinkage and redundant representation,”in CVPR, 2006.
  159. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.10.1109/TPAMI.2008.7919110489
  160. S. Li, H. Yin, and L. Fang, “Remote sensing image fusion via sparse representations over learned dictionaries,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4779–2677, Sep. 2013.
  161. L. Fang et al., “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,”IEEE Trans. Med. Imag., vol. 32, no. 11, pp. 2034–2049, Nov. 2013.
  162. L. Fang, S. Li, X. Kang, and J. A. Benediktsson “Spectral–spatial hyper- spectral image classification via multiscale adaptive sparse representa- tion,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7738–7749, Dec. 2014.
  163. Z. He, Q. Wang, Y. Shen, and M. Sun, “Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposi- tion and morphological wavelet-based features,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 5150–5163, Aug. 2014.
  164. Z. Wang, N. M. Nasrabadi, and T. S. Huang, “Spatial–spectral classifica- tion of hyperspectral images using discriminative dictionary designed by learning vector quantization,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4808–4822, Aug. 2014.
  165. J. Liu, Z. Wu, Z. Wei, L. Xiao, and L. Sun, “Spatial–spectral kernel sparse representation for hyperspectral image classification,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6, pp. 2462–2471, Dec.2013.
  166. A. Soltani-Farani, H. R. Rabiee, and S. A. Hosseini, “Spatial-aware dictionary learning for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 527– 541, Jan. 2015.10.1109/TGRS.2014.2325067
  167. Q. Zhang, Y. Tian, Y. Yang, and C. Pan, “Automatic spatial–spectral feature selection for hyperspectral image via discriminative sparse multimodal learning,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 261–279, Jan. 2015.10.1109/TGRS.2014.2321405
  168. J. Li et al., “Multiple feature learning for hyperspectral image classification,”IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592–1606, Mar. 2015.
  169. E. Zhang, X. Zhang, H. Liu, and L. Jiao, “Fast multifeature joint sparse representation for hyperspectral image classification,”IEEE Geosci. Remote Sens. Lett., vol. 12, no. 7, pp. 1397–1401, Jul. 2015.
  170. W. Fu, S. Li, L. Fang, X. Kang, and J. A. Benediktsson, “Hyperspectral image classification via shape-adaptive joint sparse representation,”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 556–567, Feb. 2016.10.1109/JSTARS.2015.2477364
  171. S. Li and L. Fang, “Signal denoising with random refined orthogo- nal matching pursuit,”IEEE Trans. Instrum. Meas., vol. 61, no. 1, pp. 26–34, Jan. 2012.10.1109/TIM.2011.2157547
  172. J. Ye, H. Wang, and W. Yang, “Image reconstruction for electrical capacitance tomography based on sparse representation,”IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 89–102, Jan. 2015.10.1109/TIM.2014.2329738
  173. Q. He, H. Song, and X. Ding, “Sparse signal reconstruction based on time–frequency manifold for rolling element bearing fault signature enhancement,”IEEE Trans. Instrum. Meas., vol. 65, no. 2, pp. 482–491, Feb. 2016.10.1109/TIM.2015.2502922
  174. L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,”IEEE Trans. Med. Imag., vol. 36, no. 2, pp. 407–421, Feb. 2017.10.1109/TMI.2016.2611503536308027662673
  175. [175]H. Liu and S. Li, “Target detection using sparse representation with element and construction combination feature,”IEEE Trans. Instrum. Meas., vol. 64, no. 2, pp. 290–298, Feb. 2015.10.1109/TIM.2014.2343412
  176. H. Liu, S. Li, and L. Fang, “Robust object tracking based on principal component analysis and local sparse representation,”IEEE Trans. Instrum. Meas., vol. 64, no. 11, pp. 2863–2875, Nov. 2015.
  177. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.10.1109/TPAMI.2008.7919110489
  178. Ping Zhong, Zhiqiang Gong, Shutao Li and Carola-Bibiane Schönlieb “Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification”IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3516–3530, Jan. 2017.
  179. Jiangtao Peng, Hong Chen, Yicong Zhou and Luoqing Li “Ideal Regularized Composite Kernel for Hyperspectral Image Classification”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1563–1574, Apr. 2017.
  180. Zhixi Feng, Min Wang, Shuyuan Yang, Zhi Liu, Linzan Liu, Bin Wu, and Hong Li “Superpixel Tensor Sparse Coding for Structural Hyperspectral Image Classification”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1632–1639, Apr. 2017.
  181. Junshi Xia, Nicola Falco, J’on Atli Benediktsson, Peijun Du and Jocelyn Chanussot “Hyperspectral Image Classification With Rotation Random Forest Via KPCA”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1601–1609, Apr. 2017.
  182. Zengmao Wang, Bo Du, Lefei Zhang,Liangpei Zhang and Xiuping Jia “A Novel Semisupervised Active-Learning Algorithm for Hyperspectral Image Classification”IEEE Geosci. Remote Sens. Lett., vol. 55, no. 6, pp. 3071–3083, Jun. 2017.
  183. Lixia Yang, Min Wang, Shuyuan Yang, Rui Zhang, and Pingting Zhang “Sparse Spatio- Spectral LapSVM With Semisupervised Kernel Propagation forHyperspectral Image Classification”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 5, pp. 2046– 2054, May. 2017.
  184. Sen Jia, Bin Deng, Jiasong Zhu, Xiuping Jia and Qingquan Li “Superpixel-Based Multitask Learning Framework for Hyperspectral Image Classification”IEEE Geosci. Remote Sens. Lett., vol. 55, no. 5, pp. 2575–2578, May. 2017.
  185. Haoliang Yuan and Yuan Yan Tang “Spectral–Spatial Shared Linear Regression for Hyperspectral Image Classification”IEEE Trans. Cybernetics., vol. 47, no. 4, pp. 934–945, Apr. 2017.10.1109/TCYB.2016.253343028113489
  186. CHUNJUAN BO1,2, HUCHUAN LU1, AND DONG WANG1”Weighted Generalized Nearest Neighbor for Hyperspectral Image Classification”IEEE Access., no. 5, pp. 1496–1509, Feb. 2017.
  187. Bushra Naz Soomro, Liang Xiao, Mohsen Molaei, Lili Huang, Zhichao Lian, and Shahzad Hyder Soomro “Local and Nonlocal Context-Aware Elastic Net Representation-Based Classification for Hyperspectral Images”IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., pp. 1–8, Mar. 2017.10.1109/JSTARS.2017.2666118
  188. Lin He, Jun Li, Antonio Plaza and Yuanqing Li “Discriminative Low-Rank Gabor Filtering for Spectral–Spatial Hyperspectral Image Classification”IEEE Geosci. Remote Sens. Lett., vol. 55, no. 3, pp. 1381–1395, Mar. 2017.
  189. Li Xie, Guangyao Li, Mang Xiao, Lei Peng, and Qiaochuan Chen “Hyperspectral Image Classification Using Discrete Space Model and Support Vector Machines”IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3, pp. 374–378, Mar. 2017.10.1109/LGRS.2016.2643686
  190. J. L. Crespo, R. J. Duro, and F. L. Pena, “Gaussian synapse ANNs in multi- and hyperspectral image data analysis,”IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 724–732, Jun. 2003.10.1109/TIM.2003.814693
  191. M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral images,”Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.10.1109/JPROC.2012.2197589
  192. H. R. Kalluri, S. Prasad, and L. M. Bruce, “Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4047–4058, Nov. 2010.
  193. S. Li and L. Fang, “Signal denoising with random refined orthogo- nal matching pursuit,”IEEE Trans. Instrum. Meas., vol. 61, no. 1, pp. 26–34, Jan. 2012.10.1109/TIM.2011.2157547
  194. H. Liu, S. Li, and L. Fang, “Robust object tracking based on principal component analysis and local sparse representation,”IEEE Trans. Instrum. Meas., vol. 64, no. 11, pp. 2863–2875, Nov. 2015.
  195. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.10.1109/TPAMI.2008.7919110489
  196. S. G. Mallat and Z. Zhang, “Matching pursuits with time- frequency dictionaries,”IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, Dec. 1993.
  197. T. C. Bau, S. Sarkar, and G. Healey, “Hyperspectral region classification using a threedimensional Gabor filterbank,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3457–3464, Sep. 2010.
  198. M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,”IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804–3814, Nov. 2008.
  199. L. Shen and S. Jia, “Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification,”IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 5039–5046, Dec. 2011.
  200. X. Huang and L. Zhang, “An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high- resolution remotely sensed imagery,”IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257–272, Jan. 2013.10.1109/TGRS.2012.2202912
  201. L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral–spatial hyperspectral image classification via multiscale adaptive sparse rep- resentation,”IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7738–7749, Dec. 2014.
Language: English
Page range: 1 - 27
Submitted on: Jun 2, 2017
Accepted on: Jul 18, 2017
Published on: Mar 1, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 S. Srinivasan, K. Rajakumar, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.