Have a personal or library account? Click to login

TWO-DEGREE ADJUSTABLE EXOSKELETON FOR ASSISTANCE OF THE HUMAN ARM USING A MECHANICAL SYSTEM OF FAST ASSEMBLY AND UPGRADABILITY

Open Access
|Mar 2017

References

  1. American Heart Association, Heart Disease and Stroke Statistics (2017). URL https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm{_}491265.pdf
  2. N. Jarrasse, T. Proietti, V. Crocher, J. Robertson, A. Sahbani, G. Morel, A. Roby-Brami, Robotic Exoskeletons:A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients, Frontiers in Human Neuroscience 8 (December) (2014) 1–13.doi:10.3389/fnhum.2014.00947. URL http://www.frontiersin.org/Human{_}Neuroscience/10.3389/fnhum.2014.00947/abstract10.3389/fnhum.2014.00947424945025520638
  3. A. Frisoli, C. Procopio, C. Chisari, I. Creatini, L. Bonfiglio, M. Bergamasco, B. Rossi, M. Carboncini, Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke, Journal of NeuroEngineering and Rehabilitation 9 (1) (2012) 36.doi:10.1186/1743-0003-9-36.10.1186/1743-0003-9-36344343622681653
  4. S. Guo, F. Zhang, F. Z. Shuxiang Guo2, 3, W. Wei, F. Zhao, Y. Wang, Kinematic Analysis of a Novel Exoskeleton Finger Rehabilitation Robot for Stroke Patients, Proceedings of 2014 IEEE International Conference on Mechatronics and Automation (2014) 924–929doi:10.1109/ICMA.2014.6885821.10.1109/ICMA.2014.6885821
  5. M. Zhang, B. Lange, C. Y. Chang, A. a. Sawchuk, A. a. Rizzo, Beyond the standard clinical rating scales: Fine-grained assessment of post-stroke motor functionality using wearable inertial sensors, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2012) 6111–6115doi:10.1109/EMBC.2012.6347388.10.1109/EMBC.2012.634738823367323
  6. M. A. Fikri, S. C. Abdullah, M. H. M. Ramli, Arm Exoskeleton for Rehabilitation Following Stroke by Learning Algorithm Prediction,Procedia Computer Science 42 (2014) 357–364.doi:10.1016/j.procs.2014.11.074. URL http://linkinghub.elsevier.com/retrieve/pii/S1877050914015129
  7. Y. Ren, H. S. Park, L. Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009 (2009) 761–765doi:10.1109/ICORR.2009.5209482.10.1109/ICORR.2009.5209482
  8. a. Frisoli, E. Sotgiu, C. Procopio, M. Bergamasco, B. Rossi, C. Chisari, Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton, IEEE ... International Conference on Rehabilitation Robotics : [proceedings] 2011 (2011) 5975512.doi:10.1109/icorr.2011.5975512. URL http://ieeexplore.ieee.org/ielx5/5961155/5975334/05975512.pdf?tp={&}arnumber=5975512{&}isnumber=5975334
  9. L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systems 91 (2017) 337–347.doi:10.1016/j.robot.2016.12.012. URL http://dx.doi.org/10.1016/j.robot.2016.12.01210.1016/j.robot.2016.12.012
  10. T.-M. Wu, C.-H.Yang, D.-Z. Chen, Muscle activation levels during upper limb exercise performed using dumbbells and a spring-loaded exoskeleton, Journal of Medical and Biological Engineering 37 (3) (2017) 345–356. doi:10.1007/s40846-017-0226-4. URL https://doi.org/10.1007/s40846-017-0226-410.1007/s40846-017-0226-4
  11. J. Hunt, H. Lee, P. Artemiadis, A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface, Journal of Mechanisms and Robotics 9 (1) (2016) 011002.doi:10.1115/1.4035087.URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4035087
  12. L. LIU, Y.-Y.SHI, L. XIE, a Novel Multi-Dof Exoskeleton Robot for Upper Limb Rehabilitation, Journal of Mechanics in Medicine and Biology 16 (08) (2016) 1640023.doi:10.1142/S0219519416400236. URL http://www.worldscientific.com/doi/abs/10.1142/S0219519416400236
  13. X. Cui, W. Chen, X. Jin, S. K. Agrawal, Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance, IEEE/ASME Transactions on Mechatronics 22 (1) (2017) 161–172.doi:10.1109/TMECH.2016.2618888.10.1109/TMECH.2016.2618888
  14. D. M. Baechle, E. D. Wetzel, S. K. Agrawal, MAXFAS: Mechatronic Arm Exoskeleton for Firearm Aim Stabilization, Journal of Mechanisms and Robotics 8 (6) (2016) 061013.doi:10.1115/1.4034015. URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4034015
  15. F. Grimm, A. Walter, M. Sp??ler, G. Naros, W. Rosenstiel, A. Gharabaghi, Hybrid neuroprosthesis for the upper limb: Combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton, Frontiers in Neuroscience 10 (AUG) (2016) 1–11.doi:10.3389/fnins.2016.00367.10.3389/fnins.2016.00367497729527555805
  16. J.-S. Botero V., J.-P.Restrepo Z., M.-T. De Ossa J., An angle measurement system of high resolution for the upper limbs using a low-cost servomotor, IOP Conference Series: Materials Science and Engineering 138 (1) (2016) 12006. URL http://stacks.iop.org/1757-899X/138/i=1/a=012006
  17. J.-S. Botero Valencia, J.-P.Restrepo Zapata, M.-T. De Ossa Jimenez, Design and implementation of a high-resolution angle measurement system for the upper limbs using a low-cost servomotor, International Journal on Interactive Design and Manufacturing (IJIDeM)doi:10.1007/s12008-016-0346-z. URL http://link.springer.com/10.1007/s12008-016-0346-z
  18. F. Kinesiology, Length dependence of active force production in skeletal muscle,Applied Physiology 86 (5) (1999) 1445–1457. URL http://jap.physiology.org/content/86/5/1445
  19. I. Galté’s, X. Jordana, M. Cos, A. Malgosa, J. Manyosa, Biomechanical model of pronation efficiency: New insight into skeletal adaptation of the hominoid upper limb, American Journal of Physical Anthropology 135 (3) (2008) 293–300.doi:10.1002/ajpa.20743. URL http:https://dx.doi.org/10.1002/ajpa.2074310.1002/ajpa.2074318000889
  20. P. Ibanez-Gimeno, I. Galtes, X. Jordana, A. Malgosa, J. Manyosa, Biomechanics of forearm rotation: Force and efficiency of pronator teres,PLoS ONE 9 (2).doi:10.1371/journal.pone.0090319. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938685/10.1371/journal.pone.0090319
  21. L. W. O’Sullivan, T. J. Gallwey, Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle, Journal of Electromyography and Kinesiology 12 (4) (2002) 275–285.doi:10.1016/S1050-6411(02)00014-7.10.1016/S1050-6411(02)00014-7
  22. C. Paraschiv, P. Paraschiv, R. Cimpoeu, Determination of the Elbow Joint Resulting Torque and Obtaining Customized Numerical Results, Procedia - Social and Behavioral Sciences 117 (2014) 522–528.doi:10.1016/j.sbspro.2014.02.256. URL http://linkinghub.elsevier.com/retrieve/pii/S1877042814017868
  23. L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systemsdoi:10.1016/j.robot.2016.12.012. URL http://linkinghub.elsevier.com/retrieve/pii/S0921889016301877
  24. J. Rosen, J. C. Perry, N. Manning, S. Burns, B. Hannaford, The human arm kinematics and dynamics during daily activities - Toward a 7 DOF upper limb powered exoskeleton, 2005 International Conference on Advanced Robotics, ICAR ‘05, Proceedings 2005 (July) (2005) 532–539.doi:10.1109/ICAR.2005.1507460. URL http://ieeexplore.ieee.org/document/1507460/10.1109/ICAR.2005.1507460
  25. BioDigital InC, BioDigital (2016). URL https://human.biodigital.com/index.html
  26. Robotis, Dynamixel MX 64 (2016). URL http://support.robotis.com/en/product/actuator/dynamixel/mx{_}series/mx-64at{_}ar.htm
Language: English
Page range: 1 - 15
Submitted on: May 21, 2017
Accepted on: Jul 17, 2017
Published on: Mar 1, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Julio Restrepo-Zapata, Carlos Gallego-Duque, David Marquez-Viloria, Botero-Valencia Juan, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.