References
- American Heart Association, Heart Disease and Stroke Statistics (2017). URL https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm{_}491265.pdf
- N. Jarrasse, T. Proietti, V. Crocher, J. Robertson, A. Sahbani, G. Morel, A. Roby-Brami, Robotic Exoskeletons:A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients, Frontiers in Human Neuroscience 8 (December) (2014) 1–13.doi:10.3389/fnhum.2014.00947. URL http://www.frontiersin.org/Human{_}Neuroscience/10.3389/fnhum.2014.00947/abstract10.3389/fnhum.2014.00947424945025520638
- A. Frisoli, C. Procopio, C. Chisari, I. Creatini, L. Bonfiglio, M. Bergamasco, B. Rossi, M. Carboncini, Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke, Journal of NeuroEngineering and Rehabilitation 9 (1) (2012) 36.doi:10.1186/1743-0003-9-36.10.1186/1743-0003-9-36344343622681653
- S. Guo, F. Zhang, F. Z. Shuxiang Guo2, 3, W. Wei, F. Zhao, Y. Wang, Kinematic Analysis of a Novel Exoskeleton Finger Rehabilitation Robot for Stroke Patients, Proceedings of 2014 IEEE International Conference on Mechatronics and Automation (2014) 924–929doi:10.1109/ICMA.2014.6885821.10.1109/ICMA.2014.6885821
- M. Zhang, B. Lange, C. Y. Chang, A. a. Sawchuk, A. a. Rizzo, Beyond the standard clinical rating scales: Fine-grained assessment of post-stroke motor functionality using wearable inertial sensors, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2012) 6111–6115doi:10.1109/EMBC.2012.6347388.10.1109/EMBC.2012.634738823367323
- M. A. Fikri, S. C. Abdullah, M. H. M. Ramli, Arm Exoskeleton for Rehabilitation Following Stroke by Learning Algorithm Prediction,Procedia Computer Science 42 (2014) 357–364.doi:10.1016/j.procs.2014.11.074. URL http://linkinghub.elsevier.com/retrieve/pii/S1877050914015129
- Y. Ren, H. S. Park, L. Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009 (2009) 761–765doi:10.1109/ICORR.2009.5209482.10.1109/ICORR.2009.5209482
- a. Frisoli, E. Sotgiu, C. Procopio, M. Bergamasco, B. Rossi, C. Chisari, Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton, IEEE ... International Conference on Rehabilitation Robotics : [proceedings] 2011 (2011) 5975512.doi:10.1109/icorr.2011.5975512. URL http://ieeexplore.ieee.org/ielx5/5961155/5975334/05975512.pdf?tp={&}arnumber=5975512{&}isnumber=5975334
- L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systems 91 (2017) 337–347.doi:10.1016/j.robot.2016.12.012. URL http://dx.doi.org/10.1016/j.robot.2016.12.01210.1016/j.robot.2016.12.012
- T.-M. Wu, C.-H.Yang, D.-Z. Chen, Muscle activation levels during upper limb exercise performed using dumbbells and a spring-loaded exoskeleton, Journal of Medical and Biological Engineering 37 (3) (2017) 345–356. doi:10.1007/s40846-017-0226-4. URL https://doi.org/10.1007/s40846-017-0226-410.1007/s40846-017-0226-4
- J. Hunt, H. Lee, P. Artemiadis, A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface, Journal of Mechanisms and Robotics 9 (1) (2016) 011002.doi:10.1115/1.4035087.URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4035087
- L. LIU, Y.-Y.SHI, L. XIE, a Novel Multi-Dof Exoskeleton Robot for Upper Limb Rehabilitation, Journal of Mechanics in Medicine and Biology 16 (08) (2016) 1640023.doi:10.1142/S0219519416400236. URL http://www.worldscientific.com/doi/abs/10.1142/S0219519416400236
- X. Cui, W. Chen, X. Jin, S. K. Agrawal, Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance, IEEE/ASME Transactions on Mechatronics 22 (1) (2017) 161–172.doi:10.1109/TMECH.2016.2618888.10.1109/TMECH.2016.2618888
- D. M. Baechle, E. D. Wetzel, S. K. Agrawal, MAXFAS: Mechatronic Arm Exoskeleton for Firearm Aim Stabilization, Journal of Mechanisms and Robotics 8 (6) (2016) 061013.doi:10.1115/1.4034015. URL http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4034015
- F. Grimm, A. Walter, M. Sp??ler, G. Naros, W. Rosenstiel, A. Gharabaghi, Hybrid neuroprosthesis for the upper limb: Combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton, Frontiers in Neuroscience 10 (AUG) (2016) 1–11.doi:10.3389/fnins.2016.00367.10.3389/fnins.2016.00367497729527555805
- J.-S. Botero V., J.-P.Restrepo Z., M.-T. De Ossa J., An angle measurement system of high resolution for the upper limbs using a low-cost servomotor, IOP Conference Series: Materials Science and Engineering 138 (1) (2016) 12006. URL http://stacks.iop.org/1757-899X/138/i=1/a=012006
- J.-S. Botero Valencia, J.-P.Restrepo Zapata, M.-T. De Ossa Jimenez, Design and implementation of a high-resolution angle measurement system for the upper limbs using a low-cost servomotor, International Journal on Interactive Design and Manufacturing (IJIDeM)doi:10.1007/s12008-016-0346-z. URL http://link.springer.com/10.1007/s12008-016-0346-z
- F. Kinesiology, Length dependence of active force production in skeletal muscle,Applied Physiology 86 (5) (1999) 1445–1457. URL http://jap.physiology.org/content/86/5/1445
- I. Galté’s, X. Jordana, M. Cos, A. Malgosa, J. Manyosa, Biomechanical model of pronation efficiency: New insight into skeletal adaptation of the hominoid upper limb, American Journal of Physical Anthropology 135 (3) (2008) 293–300.doi:10.1002/ajpa.20743. URL http:https://dx.doi.org/10.1002/ajpa.2074310.1002/ajpa.2074318000889
- P. Ibanez-Gimeno, I. Galtes, X. Jordana, A. Malgosa, J. Manyosa, Biomechanics of forearm rotation: Force and efficiency of pronator teres,PLoS ONE 9 (2).doi:10.1371/journal.pone.0090319. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938685/10.1371/journal.pone.0090319
- L. W. O’Sullivan, T. J. Gallwey, Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle, Journal of Electromyography and Kinesiology 12 (4) (2002) 275–285.doi:10.1016/S1050-6411(02)00014-7.10.1016/S1050-6411(02)00014-7
- C. Paraschiv, P. Paraschiv, R. Cimpoeu, Determination of the Elbow Joint Resulting Torque and Obtaining Customized Numerical Results, Procedia - Social and Behavioral Sciences 117 (2014) 522–528.doi:10.1016/j.sbspro.2014.02.256. URL http://linkinghub.elsevier.com/retrieve/pii/S1877042814017868
- L. Zhou, Y. Li, S. Bai, A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation, Robotics and Autonomous Systemsdoi:10.1016/j.robot.2016.12.012. URL http://linkinghub.elsevier.com/retrieve/pii/S0921889016301877
- J. Rosen, J. C. Perry, N. Manning, S. Burns, B. Hannaford, The human arm kinematics and dynamics during daily activities - Toward a 7 DOF upper limb powered exoskeleton, 2005 International Conference on Advanced Robotics, ICAR ‘05, Proceedings 2005 (July) (2005) 532–539.doi:10.1109/ICAR.2005.1507460. URL http://ieeexplore.ieee.org/document/1507460/10.1109/ICAR.2005.1507460
- BioDigital InC, BioDigital (2016). URL https://human.biodigital.com/index.html
- Robotis, Dynamixel MX 64 (2016). URL http://support.robotis.com/en/product/actuator/dynamixel/mx{_}series/mx-64at{_}ar.htm