Have a personal or library account? Click to login

DEVELOPMENT OF SOFT SENSOR TO ESTIMATE MULTIPHASE FLOW RATES USING NEURAL NETWORKS AND EARLY STOPPING

Open Access
|Mar 2017

References

  1. L. Fortuna, S. Graziani, A. Rizzo, and M. G. Xibilia, Soft sensors for monitoring and control of industrial processes: Springer Science & Business Media, 2007, pp. 167-225.
  2. G. Wei and P. Tianhong, “An adaptive soft sensor based on multi-state partial least squares regression,” in Control Conference (CCC), 2015 34th Chinese, 2015, pp. 1892-1896.10.1109/ChiCC.2015.7259921
  3. M. Eastwood and P. Kadlec, “Interpretable, Online Soft-Sensors for Process Control,” in 2011 IEEE 11th International Conference on Data Mining Workshops, 2011, pp. 581-587.10.1109/ICDMW.2011.105
  4. D. R. Baughman and Y. A. Liu, Neural Networks in Bioprocessing and Chemical Engineering: Elsevier Science, 2014, pp. 228-433.
  5. J. Mohd Ali, M. A. Hussain, M. O. Tade, and J. Zhang, “Artificial Intelligence techniques applied as estimator in chemical process systems – A literature survey,” Expert Systems with Applications, vol. 42, pp. 5915-5931, 8/15/ 2015.
  6. S. Ramasahayam and S. R. Chowdhury, “Non Invasive Estimation of Blood Urea Concentration using Near Infrared Spectroscopy,” INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, vol. 9, pp. 449-467, 2016.10.21307/ijssis-2017-878
  7. N. Mohamed Ramli, M. A. Hussain, B. Mohamed Jan, and B. Abdullah, “Composition Prediction of a Debutanizer Column using Equation Based Artificial Neural Network Model,” Neurocomputing, vol. 131, pp. 59-76, 5/5/ 2014.10.1016/j.neucom.2013.10.039
  8. H. Zargari, S. Poordad, and R. Kharrat, “Porosity and permeability prediction based on computational intelligences as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) in southern carbonate reservoir of Iran,” Petroleum Science and Technology, vol. 31, pp. 1066-1077, 2013.
  9. E. Oko, M. Wang, and J. Zhang, “Neural network approach for predicting drum pressure and level in coal-fired subcritical power plant,” Fuel, vol. 151, pp. 139-145, 7/1/ 2015.10.1016/j.fuel.2015.01.091
  10. P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven Soft Sensors in the process industry,” Computers & Chemical Engineering, vol. 33, pp. 795-814, 4/21/ 2009.10.1016/j.compchemeng.2008.12.012
  11. X. Yuan, Z. Ge, and Z. Song, “Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes,” Industrial & Engineering Chemistry Research, vol. 53, pp. 13736-13749, 09/03 2014.
  12. H. Liu and C. Yoo, “A robust localized soft sensor for particulate matter modeling in Seoul metro systems,” Journal of Hazardous Materials, vol. 305, pp. 209-218, 3/15/ 2016.10.1016/j.jhazmat.2015.11.05126686480
  13. S. Guptaa, S. B. Satpala, S. Banerjeeb, and A. Guhaa, “VIBRATION BASED HEALTH MONITORING OF HONEYCOMB CORE SANDWICH PANELS USING SUPPORT VECTOR MACHINE,” International Journal on Smart Sensing & Intelligent Systems, vol. 9, pp. 233 – 255, 2016.10.21307/ijssis-2017-867
  14. D. Riordan, P. Doody, and J. Walsh, “The use of artificial neural networks in the estimation of the perception of sound by the human auditory system,” International journal on smart sensing and intelligent systems, vol. 8, pp. 1806-1836, 2015.
  15. A. Thati, A. Biswas, S. R. Chowdhury, and T. K. Sau, “BREATH ACETONE-BASED NON-INVASIVE DETECTION OF BLOOD GLUCOSE LEVELS,” International Journal on Smart Sensing & Intelligent Systems, vol. 8, pp. 1244-1260, 2015.
  16. F. A. A. Souza, R. Araújo, and J. Mendes, “Review of soft sensor methods for regression applications,” Chemometrics and Intelligent Laboratory Systems, vol. 152, pp. 69-79, 3/15/ 2016.10.1016/j.chemolab.2015.12.011
  17. G. Falcone, G. Hewitt, and C. Alimonti, Multiphase flow metering: principles and applicationns vol. 54: Elsevier, pp. 20-31, pp. 191-224 and pp. 267-301, 2009.
  18. R. Thorn, G. Johansen, and B. Hjertaker, “Three-phase flow measurement in the petroleum industry,” Measurement Science and Technology, vol. 24, pp. 1-17, 2012.10.1088/0957-0233/24/1/012003
  19. R. Varyan, “Cost Saving of Implementing Virtual Flow Metering at Various Fields and Engineering Phases-A Case Study,” in Offshore Technology Conference-Asia, Malaysia, March 22, 2016, doi:10.4043/26637-MS.10.4043/26637-MS
  20. R. API, “86-Recommended Practice for Measurement of Multiphase Flow (2005),” API Executive Committee on Drilling and Production Operations, American Petroleum Institute, pp. 26-47.
  21. M. J. Moghaddasi, I. Lotfi, and M. Moghaddasi, “Comparison of correlations for predicting oil flow rate passing through chokes,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 37, pp. 1340-1345, 2015.
  22. P. Patel, H. Odden, B. Djoric, R. D. Garner, and H. K. Vea, “Model Based Multiphase Metering and Production Allocation,” in Offshore Technology Conference-Asia, Malaysia, Mar 25, 2014, doi: 10.4043/25457-MS.10.4043/25457-MS
  23. A. Amin, “Evaluation of Commercially Available Virtual Flow Meters (VFMs),” in Offshore Technology Conference, USA, May 4, 2015, doi: 10.4043/25764-MS.10.4043/25764-MS
  24. O. Bello, S. Ade-Jacob, and K. Yuan, “Development of Hybrid Intelligent System for Virtual Flow Metering in Production Wells,” in SPE Intelligent Energy Conference & Exhibition, The Netherlands, Apr 1, 2014, doi: 10.2118/167880-MS.10.2118/167880-MS
  25. R. Varyan, R. Haug, and D. Fonnes, “Investigation on the Suitability of Virtual Flow Metering System as an Alternative to the Conventional Physical Flow Meter,” in SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Indonesia, 20 Oct, 2015, doi: 10.2118/176432-MS.10.2118/176432-MS
  26. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, pp. 359-366, 1989.10.1016/0893-6080(89)90020-8
  27. S. S. Haykin, Neural networks and learning machines vol. 3: Pearson Education Upper Saddle River, pp. 1-46, 2009.
  28. H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural network design: Martin Hagan, pp. 363-431 and pp. 468-598, 2014.
  29. D. Hunter, H. Yu, I. M. S. Pukish, J. Kolbusz, and B. M. Wilamowski, “Selection of Proper Neural Network Sizes and Architectures; A Comparative Study,” IEEE Transactions on Industrial Informatics, vol. 8, pp. 228-240, 2012.10.1109/TII.2012.2187914
  30. D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights,” in Neural Networks, 1990., 1990 IJCNN International Joint Conference on, 1990, pp. 21-26.10.1109/IJCNN.1990.137819
  31. R. Battiti, “First-and second-order methods for learning: between steepest descent and Newton’s method,” Neural computation, vol. 4, pp. 141-166, 1992.10.1162/neco.1992.4.2.141
  32. H. Yu and B. M. Wilamowski, “Levenberg–marquardt training,” Industrial Electronics Handbook, vol. 5, p. 1, 2011.10.1201/b10604-15
  33. R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping,” in NIPS, 2000, pp. 402-408.10.1109/IJCNN.2000.857823
  34. S. Corneliussen, J.-P. Couput, E. Dahl, E. Dykesteen, K.-E. Frøysa, E. Malde, et al., “Handbook of multiphase flow metering,” Norwegian Society for Oil and Gas Measurement (NFOGM), Revision, vol. 2, 2005.
Language: English
Page range: 1 - 24
Submitted on: Jan 25, 2017
Accepted on: Feb 1, 2017
Published on: Mar 1, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Tareq Aziz AL-Qutami, Rosdiazli Ibrahim, Idris Ismail, Mohd Azmin Ishak, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.