Have a personal or library account? Click to login
Development of Blind Deblurring Based on Deep Learning Cover
By: Shi Kecun and  Zhao Li  
Open Access
|May 2023

References

  1. Whyte O, Sivic J, Zisserman A, et al. Non-uniform Deblurring for Shaken Images [J]. International Journal of Computer Vision, 2012, 98(2):168–186.
  2. Zhou Luoyu, Zhang Bao, Yang Yang. Estimation of parameter of defocused blurred image using Hough transform [J]. Infrared and Laser Engineering, 2012, 41(10): 2833–2837.
  3. S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. Pages 3883–3891, 2017.
  4. T. Hyun Kim, K. Mu Lee, B. Scholkopf, and M. Hirsch. Online video deblurring via dynamic temporal blending network. In ICCV, pages 4038–4047. IEEE, 2017.
  5. S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang. Deep video deblurring. Pages 1279–1288, 2017.
  6. Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. TIP, 2011.1
  7. Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. TPAMI, 2010.1
  8. Kwang In Kim and Y ounghee Kwon. Single-image super-resolution using sparse regression and natural image prior. TPAMI, 2010.1
  9. Wu D, Zhao H T, Zheng S B. Motion deblurring method based on DenseNets [J]. J Image Graph, 2020, 25(5): 890–899.
  10. Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2472–2481.
  11. Shao W Z, Liu Y Y, Ye L Y, et al. DeblurGAN+: Revisiting blind motion deblurring using conditional adversarial networks [J]. Signal Processing, 2020, 168: 107338.
  12. Chakrabarti A. A Neural Approach to Blind Motion Deblurring[C]. European Conference on Computer Vision, Springer, Cham, 2016: 221–235.
  13. C. J. Schuler, M. Hirsch, S. Harmeling, and B. Scholkopf. Learning to deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439–1451, 2016. 2
  14. Sun J, Cao W F, Xu Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]// IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2015:769–777.
  15. Li J, Li K, Yan B. Scale-aware deep network with hole convolution for blind motion deblurring[C]//IEEE Inter national Conference on Multimedia and Expo(ICME), Shanghai, China, 2019:658–663.
  16. Liu K, Yeh C, Chung J, et al. A motion deblur method based on multi-scale high frequency residual image learning [J]. IEEE Access, 2020, 8: 66025–66036.
  17. Noroozi M, Chandramouli P, Favaro P. Motion Deblurring in the Wild[C]. German Conference on Pattern Recognition, Springer, Cham, 2017: 65–77.
  18. Nah S, Kim T H, Lee K M. Deep Multi-scale convolutional neural network for dynamic scene deblurring [J]. IEEE Computer Vision and Pattern Recognition, 2017, 35(1):257–265.
  19. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.
  20. Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8174–8182, 2018.
  21. Zhang H, Dai Y, Li H, et al. Deep stacked hierarchical multi-patch network for image deblurring [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019:5971–5979.
  22. Zhang J. Dynamic scene deblurring using spatially variant recurrent neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018:2521–2529.
  23. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]. Advances in Neural Information Processing Systems, 2014:2 672–2 680.
  24. Isola P, Zhu J Y, Zhou T, et al. Image-to-Image Translation with Conditional Adversarial Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017:5 967–5 976.
  25. Sixt L, Wild B, Landgraf T. Rendergan: Generating Realistic labeled Data [J/OL]. https://openreview.net/forum?id=BkGakb9lx, 2017-01-12/ 2018-05-02.
  26. Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, July 21–26, 2017. Piscataway, NJ: IEEE, 2017: 4681–4690.
  27. Kupyn O, Budzan V, Mykhailych M, et al. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks [J/OL]. https://arxiv.org/pdf/1711.07064.pdf, 2017-11-21 / 2018-05-02.
  28. Kupyn O, Martyniuk T, Wu J, et al. Deblurganv2:Deblurring (orders-of-magnitude) faster and better[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Oct. 27–Nov. 2, 2019. Piscataway, NJ: IEEE, 2019: 8878–8887.
  29. Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4):600–612.
  30. Lai W, Huang J, Hu Z, et al. A comparative study for single image blind deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016: 1701–1709.
  31. Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolution algorithms[C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, 2009: 1964–1971.
  32. Zhang K, Zuo W, Zhang L. Deep plug-and-play super-resolution for arbitrary blur kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, June 15–20, 2019. Piscataway, NJ: IEEE, 2019: 1671–1681.
  33. Purohit K, Shah A, Rajagopalan A N. Bringing alive blurred moments[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Long Beach, June 15–20, 2019. Piscataway, NJ: IEEE, 2019: 6830–6839.
  34. Purohit K, Rajagopalan A N. Region-adaptive dense network for efficient motion deblurring [C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, February 7–12, 2020. Published by AAAI Press, Palo Alto, California USA, 2020, 34(7): 11882–11889.
  35. Bai Y, Jia H, Jiang M, et al. Single-image blind deblurring using multi-scale latent structure prior [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(7): 2033–2045.
Language: English
Page range: 106 - 114
Published on: May 21, 2023
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Shi Kecun, Zhao Li, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.