References
- Whyte O, Sivic J, Zisserman A, et al. Non-uniform Deblurring for Shaken Images [J]. International Journal of Computer Vision, 2012, 98(2):168–186.
- Zhou Luoyu, Zhang Bao, Yang Yang. Estimation of parameter of defocused blurred image using Hough transform [J]. Infrared and Laser Engineering, 2012, 41(10): 2833–2837.
- S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. Pages 3883–3891, 2017.
- T. Hyun Kim, K. Mu Lee, B. Scholkopf, and M. Hirsch. Online video deblurring via dynamic temporal blending network. In ICCV, pages 4038–4047. IEEE, 2017.
- S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang. Deep video deblurring. Pages 1279–1288, 2017.
- Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. TIP, 2011.1
- Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze removal using dark channel prior. TPAMI, 2010.1
- Kwang In Kim and Y ounghee Kwon. Single-image super-resolution using sparse regression and natural image prior. TPAMI, 2010.1
- Wu D, Zhao H T, Zheng S B. Motion deblurring method based on DenseNets [J]. J Image Graph, 2020, 25(5): 890–899.
- Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2472–2481.
- Shao W Z, Liu Y Y, Ye L Y, et al. DeblurGAN+: Revisiting blind motion deblurring using conditional adversarial networks [J]. Signal Processing, 2020, 168: 107338.
- Chakrabarti A. A Neural Approach to Blind Motion Deblurring[C]. European Conference on Computer Vision, Springer, Cham, 2016: 221–235.
- C. J. Schuler, M. Hirsch, S. Harmeling, and B. Scholkopf. Learning to deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439–1451, 2016. 2
- Sun J, Cao W F, Xu Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]// IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2015:769–777.
- Li J, Li K, Yan B. Scale-aware deep network with hole convolution for blind motion deblurring[C]//IEEE Inter national Conference on Multimedia and Expo(ICME), Shanghai, China, 2019:658–663.
- Liu K, Yeh C, Chung J, et al. A motion deblur method based on multi-scale high frequency residual image learning [J]. IEEE Access, 2020, 8: 66025–66036.
- Noroozi M, Chandramouli P, Favaro P. Motion Deblurring in the Wild[C]. German Conference on Pattern Recognition, Springer, Cham, 2017: 65–77.
- Nah S, Kim T H, Lee K M. Deep Multi-scale convolutional neural network for dynamic scene deblurring [J]. IEEE Computer Vision and Pattern Recognition, 2017, 35(1):257–265.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.
- Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8174–8182, 2018.
- Zhang H, Dai Y, Li H, et al. Deep stacked hierarchical multi-patch network for image deblurring [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019:5971–5979.
- Zhang J. Dynamic scene deblurring using spatially variant recurrent neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018:2521–2529.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]. Advances in Neural Information Processing Systems, 2014:2 672–2 680.
- Isola P, Zhu J Y, Zhou T, et al. Image-to-Image Translation with Conditional Adversarial Networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017:5 967–5 976.
- Sixt L, Wild B, Landgraf T. Rendergan: Generating Realistic labeled Data [J/OL]. https://openreview.net/forum?id=BkGakb9lx, 2017-01-12/ 2018-05-02.
- Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, July 21–26, 2017. Piscataway, NJ: IEEE, 2017: 4681–4690.
- Kupyn O, Budzan V, Mykhailych M, et al. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks [J/OL]. https://arxiv.org/pdf/1711.07064.pdf, 2017-11-21 / 2018-05-02.
- Kupyn O, Martyniuk T, Wu J, et al. Deblurganv2:Deblurring (orders-of-magnitude) faster and better[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Oct. 27–Nov. 2, 2019. Piscataway, NJ: IEEE, 2019: 8878–8887.
- Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4):600–612.
- Lai W, Huang J, Hu Z, et al. A comparative study for single image blind deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016: 1701–1709.
- Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolution algorithms[C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, 2009: 1964–1971.
- Zhang K, Zuo W, Zhang L. Deep plug-and-play super-resolution for arbitrary blur kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, June 15–20, 2019. Piscataway, NJ: IEEE, 2019: 1671–1681.
- Purohit K, Shah A, Rajagopalan A N. Bringing alive blurred moments[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Long Beach, June 15–20, 2019. Piscataway, NJ: IEEE, 2019: 6830–6839.
- Purohit K, Rajagopalan A N. Region-adaptive dense network for efficient motion deblurring [C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, February 7–12, 2020. Published by AAAI Press, Palo Alto, California USA, 2020, 34(7): 11882–11889.
- Bai Y, Jia H, Jiang M, et al. Single-image blind deblurring using multi-scale latent structure prior [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(7): 2033–2045.