Have a personal or library account? Click to login
SIS-CNN: Semantic Image Segmentation Using Convolutional Neural Networks Cover

SIS-CNN: Semantic Image Segmentation Using Convolutional Neural Networks

Open Access
|Feb 2021

References

  1. P. Wang, P. Chen, Y. Yuan, D. Liu, “Understanding convolution for semantic segmentation,” IEEE, 2018.
  2. MI. Jordan, TM. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, 2015.
  3. Y. LeCun, Y Bengio, G. Hinton, “Deep learning,” nature, 2015.
  4. A Garcia-Garcia, S Orts-Escolano, S Oprea, “A review on deep. Learning techniques applied to. Semantic segmentation,” TPAMI, 2017.
  5. Karen. Simonyan, Andrew. Zisserman, “Very deep convolutional networks for large -scale image recognition,” Department of Engineering Science,” University of Oxford, 2015.
  6. A Krizhevsky, I Sutskever, GE. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in.neural information, 2012.
  7. Kaiming He, Xiangyu Zhang, S Ren, J Sun, “Deep. Residual. Learning for Image Recognition,” Proceedings of the IEEE, 2016.
  8. J. Deng, W. Dong, R. Socher, LJ Li, K Li, “Imagenet: A large-scale hierarchical image database,” IEEE conference, 2009.
  9. Ronneberger, P Fischer, T Brox, “U-net: Convolutional networks for biomedical image segmentation,” International Conference on Medical, 2015.
  10. D. Wu, Y. Wang, ST. Xia, J. Bailey, X. Ma, “Skip connections matter: On the transferability of adversarial examples generated with resnets,” ICLR conference paper, 2020.
  11. R. Yamashita, M. Nishio, RKG. Do, K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights into imaging, 2018.
  12. H. Zhao, J. Shi, X. Qi, X. Wang, “Pyramid scene parsing network,” Proceedings of the IEEE, 2017.
  13. J. Long, E. Shelhamer, T. Darrell, “Fully convolutional networks for semantic segmentation,” Proceedings of the IEEE, 2015.
  14. LC. Chen, Y. Zhu, G. Papandreou, “Encoder-decoder with.atrous separable convolution for semantic.image segmentation,” Proceedings of the IEEE, 2018.
  15. J. Kang, S. Kim, KM. Lee, “Multi – modal/multi-scale convolutional neural network based in-loop filter design for next generation video codec” IEEE (ICIP), 2017.
  16. G. Lin, Q. Wu, L. Qiu, X. Huang, “Image super-resolution using a dilated convolutional neural network,” Neurocomputing, 2018.
  17. LC. Chen, G. Papandreou, I. Kokkinos, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,” zzZZ IEEE, 2017.
  18. T. Mikolov, M. Karafiát, L. Burget, J. Černocký, “Recurrent neural network based language model,” International Speech Communication Association, 2010.
  19. P. Badjatiya, LJ. Kurisinkel, M. Gupta, “Attention-based neural text segmentation,” ECIR, 2018.
  20. O. Matan, C. J. Burges, Y. LeCun, and J. S. Denker, “Multidigit recognition using a space displacement neural network,” NIPS, 1992.
  21. JJ. Koenderink, AJ. Van. Doorn, “Representation of local geometry in the visual system,” Biological Cybernetics, 1987.
  22. G. Papandreou, LC. Chen, “Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation,” Proceedings of the IEEE, 2015.
  23. B. Zhang, C. Wang, Y. Shen, Y. Liu, “Fully connected conditional random fields for high-resolution remote sensing land use/land cover classification with convolutional neural networks,” Remote Sensing, 2018.
  24. M. Everingham, L. Van. Gool, CKI. Williams, “The pascal visual object classes (voc) challenge,” International Journal of Computer Vision, 2009.
  25. M. Cordts, M. Omran, S. Ramos, “The cityscapes dataset,” Future of Datasets in Vision, 2015.
  26. S. Zheng, S. Jayasumana, “Conditional random fields as recurrent neural networks,” Proceedings of the IEEE, 2015.
  27. H. Noh, S. Hong, B. Han, “Learning deconvolution network for semantic segmentation,” Proceedings of the IEEE, 2015.
  28. Y. Chen, J. Tao, L. Liu, J. Xiong, R. Xia, J. Xie, “Research of improving semantic image segmentation based on a feature fusion model,” Journal of Ambient Intelligence and Humanized Computing, 2020.
  29. D-Roy, P-Panda, K-Roy, “Tree-CNN: a hierarchical deep convolutional neural network for incremental learning,” Neural Networks, 2020.
  30. PM-Shakeel, S-Baskar, R-Sampath, “Echocardiography image segmentation using feed forward artificial neural network (FFANN) with fuzzy multi-scale edge detection (FMED),” International Journal of Signal and Imaging Systems Engineering,” 2019.
  31. DP. Kingma, P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,” NIPS 2018.
Language: English
Page range: 9 - 17
Published on: Feb 22, 2021
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Muhammad Adeel Ahmed Tahir, Xiao Feng, Zaryab Shaker, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution 4.0 License.