Have a personal or library account? Click to login
Generating Sea Surface Object Image Using Image-to-Image Translation Cover
By: Wenbin Yin,  Jun Yu and  Zhiyi Hu  
Open Access
|Feb 2022

References

  1. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial nets, Advances in neural information processing systems (2014), pp. 2672–2680.
  2. M. Mirza, S. Osindero, Conditional Generative Adversarial Nets, Computer Science (2014) pp.2672–2680.
  3. P. Isola, J.-Y. Zhu, T. Zhou, et al. Image-to-image translation with conditional adversarial networks, in the IEEE conference on computer vision and pattern recognition (CVPR) (2017), pp. 1125–1134.
  4. T. C. Wang, M. Y. Liu, J. Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-resolution image synthesis and semantic manipulation with conditional GANs, In the IEEE conference on computer vision and pattern recognition (CVPR) (2018), pp. 8798–8807.
  5. M. Zhai, L. Chen, F. Tung, J. He, M. Nawhal, G. Mori, Lifelong gan: Continual learning for conditional image generation. In the IEEE International Conference on Computer Vision(ICCV) (2019), pp. 2759–2768.
  6. D. Bau, H. Strobelt, W. Peebles, et al. Semantic photo manipulation with a generative image prior[J]. arXiv preprint arXiv:2005.07727, 2020.
  7. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, Infogan: Interpretable representation learning by information maximizing generative adversarial nets, Advances in neural information processing systems (NIPS) (2016), pp. 2172–2180.
  8. J.Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, E. Shechtman, Toward multimodal image-to-image translation, Advances in neural information processing systems (NIPS) (2017), pp. 465–476.
  9. J. Y. Zhu, T. Park, P. Isola, et al., Unpaired image-to-image translation using cycle-consistent adversarial networks, In the IEEE international conference on computer vision (ICCV) (2017), pp. 2223–2232.
  10. W. Xian, P. Sangkloy, V. Agrawal, et al. Texturegan: Controlling deep image synthesis with texture patches, In the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 8456–8465.
  11. Y. Lu, S. Wu, Y. W. Tai, et al., Image generation from sketch constraint using contextual gan, in the European Conference on Computer Vision (ECCV) (2018), pp. 205–220.
  12. A. Gonzalez-Garcia, J. Van De Weijer, Y. Bengio, Image-to-image translation for cross-domain disentanglement, Advances in neural information processing systems (NIPS) (2018), pp. 1287–1298.
  13. H. Tang, D. Xu, G. Liu, W. Wang, N. Sebe, Y. Yan, Cycle in cycle generative adversarial networks for keypoint-guided image generation. In the 27th ACM International Conference on Multimedia (2019, October), pp. 2052–2060.
  14. Z. Gan, L. Chen, W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li, L. Carin, Triangle generative adversarial networks. In NIPS. (2017) pp. 5253–5262.
  15. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In CVPR. (2018)
  16. Huang X, Liu M Y, Belongie S, et al. Multimodal unsupervised image-to-image translation. In ECCV. (2018)
  17. M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In NIPS, 2017.
  18. Taigman, Y., Polyak, A., Wolf, L. Unsupervised cross-domain image generation. In ICLR. (2017)
  19. K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised pixel-level domain adaptation with generative adversarial networks. In CVPR. (2017)
  20. E. Hosseini-Asl, Y. Zhou, C. Xiong, R. Socher, Augmented cyclic adversarial learning for low resource domain adaptation (2018). arXiv preprint arXiv:1807.00374.
  21. M. Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, J. Kautz, Few-shot unsupervised image-to-image translation, In the IEEE International Conference on Computer Vision (ICCV) (2019), pp. 10551–10560.
  22. T. C. Wang, M. Y. Liu, A. Tao, G. Liu, J. Kautz, B. Catanzaro, Few-shot video-to-video synthesis, (2019) arXiv preprint arXiv:1910.12713.
  23. A. Torralba, Contextual priming for object detection, International journal of computer vision, 2003, 53(2): 169–191.
  24. X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In ECCV. (2016)
  25. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR. (2016)
  26. D. Yoo, N. Kim, S. Park, A. S. Paek, and I. S. Kweon. Pixel-level domain transfer. In ECCV. (2016)
  27. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In the IEEE con ference on computer vision and pattern recognition (CVPR) (2016), pp. 770–778.
Language: English
Page range: 48 - 55
Published on: Feb 21, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Wenbin Yin, Jun Yu, Zhiyi Hu, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution 4.0 License.