References
- K. Zhang, W. Zuo, and L. Zhang. Learning a single convolutional super-resolution network for multiple degradations. In CVPR, 2018.
- Lai W S, Huang J B, Hu Z, et al. A Comparative Study for Single Image Blind Deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016.
- X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. Detail-revealing deep video super-resolution. In ICCV. IEEE, 2017.
- Y.-W. Tai, P. Tan, and M. S. Brown. Richardson-lucy deblurring for scenes under a projective motion path. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2011:1603–1618.
- Wang F, Jiang M, Qian C, et al. Residual Attention Network for Image Classification [J]. arXiv: Computer Vision and Pattern Recognition, 2017
- Kupyn O, Budzan V, Mykhailych M, Mishkin D and Matas J. Deblur GAN: blind motion deblurring using conditional adversarial networks//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018.
- Fergus R, Singh B, Hertzmann A, Roweis S T and Freeman W T. Removing camera shake from a single photograph. ACM Transactions on Graphics, 2006:787-794.
- Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image[J]. Acm transactions on graphics (tog), 2008:73.
- Xu L, Ren J S J, Liu C, et al. Deep convolutional neural network for image deconvolution[C]//Advances in neural information processing systems. 2014:1790-1798.
- J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional neural network for non-uniform motion blur removal. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015:769–777.
- Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf. A machine learning approach for non-blind image deconvolution. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013:1067–1074.
- Gong D, Yang J, Liu L Q, Zhang Y N, Reid L, Shen C H, Van Den Hengel A and Shi Q F. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017:3806-3815.
- Nah S, Kim T H and Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017:257-265.
- Li J, Fang F, Mei K, et al. Multi-scale Residual Network for Image Super-Resolution: 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VIII[C]// European Conference on Computer Vision. Springer, Cham, 2018.
- Yan Y, Ren W, Guo Y, et al. Image deblurring via extreme channels prior[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:4003-4011.
- Xingjian S H I, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]//Advances in neural information processing systems. 2015:802-810.
- Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning [J]. arXiv preprint arXiv:1603.07285, 2016.
- Xu X, Pan J, Zhang Y J, et al. Motion blur kernel estimation via deep learning [J]. IEEE Transactions on Image Processing, 2018, 27(1):194-205.
- Li Y, Liu S, Yang J, et al. Generative face completion[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:5892-5900.
- Xingjian S H I, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]// Advances in neural information processing systems. 2015:802-810.